High speed column-parallel CDS/ADC circuit with nonlinearity compensation for CMOS image sensors

Suying Yao , Zhixun Yang , Shibin Zhao , Jiangtao Xu

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (2) : 79 -84.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (2) : 79 -84. DOI: 10.1007/s12209-011-1538-z
Article

High speed column-parallel CDS/ADC circuit with nonlinearity compensation for CMOS image sensors

Author information +
History +
PDF

Abstract

A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper. The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a three-phase column-parallel circuit based on two floating gate inverters and switched-capacitor network. The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step. A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step, which can reduce the clock step from 2 n to 2(n/2+1). The floating gate inverters are implemented to reduce the power consumption. Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter, which can equalize the coupling path in three phases of the proposed circuit. This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18 μm process. Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10 MHz. The power consumption of this circuit is less than 36.5 μW with a 3.3 V power supply. The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.

Keywords

CMOS image sensor / two-step single-slope ADC / nonlinear offset compensation / high speed / low power consumption

Cite this article

Download citation ▾
Suying Yao, Zhixun Yang, Shibin Zhao, Jiangtao Xu. High speed column-parallel CDS/ADC circuit with nonlinearity compensation for CMOS image sensors. Transactions of Tianjin University, 2011, 17(2): 79-84 DOI:10.1007/s12209-011-1538-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El Gamal A., Eltoukhy H. CMOS image sensors[J]. IEEE Circuits and Devices Magazine, 2005, 21(3): 6-20.

[2]

Krymski A. I., Bock N. E., Tu N. R., et al. A high speed, 240-frames/s, 4.1-Mpixel CMOS sensor[J]. IEEE Transactions on Electron Devices, 2003, 50(1): 130-135.

[3]

Yoon K., Kim C., Lee B., et al. Single-chip CMOS image sensor for mobile applications[J]. IEEE Journal of Solid-State Circuits, 2002, 37(12): 1839-1845.

[4]

Snoeij M. F., Theuwissen A. J. P., Makinwa K. A. A., et al. A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 3007-3015.

[5]

Yang D. X. D., Fowler B., El Gamal A. A nyquist-rate pixel-level ADC for CMOS image sensors[J]. IEEE Journal of Solid-State Circuits, 1999, 34(3): 348-356.

[6]

Ham S., Jung W., Lee D., et al. Ramp slope built-in-self-calibration scheme for single-slope column analog-to-digital converter complementary metal-oxide-semiconductor image sensor[J]. Japanese Journal of Applied Physics, 2006, 45(7): 201-203.

[7]

Sugiki T, Ohsawa S, Miura H et al. A 60 mW 10 b CMOS image sensor with column-to-column FPN reduction[C]. In: Solid-State Circuits Conference, 2000. San Francisco, 2000. 108–109, 450.

[8]

Mase M., Kawahito S., Sasaki M., et al. A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2787-2795.

[9]

Decker S., McGrath R. D., Brehmer K., et al. A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output[J]. IEEE Journal of Solid-State Circuits, 1996, 33(12): 2081-2091.

[10]

Lim S., Lee J., Kim D., et al. A high-speed CMOS image sensor with column-parallel two-step single-slope ADCs[J]. IEEE Transactions on Electron Devices, 2009, 56(3): 393-398.

[11]

Kwon M., Chae Y., Han G. Sub-μW switched-capacitor circuits using a class-c inverter[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A(5): 1313-1319.

[12]

Kim Dongsoo, Han Gunhee. A low noise and low power CMOS image sensor with pixel-level correlated double sampling[C]. In: Proceedings of the 2007 IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems. Krakow, Poland, 2007. 1–3.

[13]

Ramirez-Angulo J., Choi S. C., Gonzalez-Altamirano G. Low-voltage circuits building blocks using multiple-input floating-gate transistors[J]. IEEE Transactions on Circuits and Systems, 1995, 42(11): 971-974.

[14]

Berg Y., Lande T. S., Naess O., et al. Ultra-low-voltage floating-gate transconductance amplifiers[J]. IEEE Transactions on Circuits and Systems, 2001, 48(1): 37-44.

[15]

Hasler P., Minch B. A., Diorio C. An autozeroing floating-gate amplifier[J]. IEEE Transactions on Circuits and Systems, 2001, 48(1): 74-82.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/