Generalized derivations in prime rings

Wei Wu , Zhaoxun Wan

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 75 -78.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 75 -78. DOI: 10.1007/s12209-011-1497-4
Article

Generalized derivations in prime rings

Author information +
History +
PDF

Abstract

Let R be a ring, a,bR, (D,α) and (G,β) be two generalized derivations of R. It is proved that if aD(x) = G(x)b for all xR, then one of the following possibilities holds: (i) If either a or b is contained in C, then α = β = 0 and there exist p,qQ r(RC) such that D(x) = px and G(x) = qx for all xR; (ii) If both a and b are contained in C, then either a = b = 0 or D and G are C -linearly dependent; (iii) If neither a nor b is contained in C, then there exist p,qQ r(RC) and wQ r (R) such that α(x) = [q,x]_and β(x) = [x,p]_for all xR, whence D(x) = wxxq and G(x) = xp + avx with vC and awpb = 0.

Keywords

prime ring / right Martindale quotient ring / extended centroid / generalized derivation

Cite this article

Download citation ▾
Wei Wu, Zhaoxun Wan. Generalized derivations in prime rings. Transactions of Tianjin University, 2011, 17(1): 75-78 DOI:10.1007/s12209-011-1497-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Posner H. C. Derivations in prime rings[J]. Proc Amer Math Soc, 1957, 8, 1093-1100.

[2]

Herstein I. N. A note on derivations[J]. Canad Math Bull, 1978, 21(3): 369-370.

[3]

Lanski C. A note on GPIS and their coefficients[J]. Proc Amer Math Soc, 1986, 98(1): 17-19.

[4]

Lanski C. Differential identities, Lie ideals, and Posner’s Theorems[J]. Pac J Math, 1988, 134(2): 275-297.

[5]

Passman H. Infinite Crossed Products[M]. 1989, San Diego: Academic Press.

[6]

Lanski C. Derivations with nilpotent values on left ideals[J]. Comm Algebra, 1994, 22(4): 1305-1320.

[7]

Beidar K. I., Bresar M., Chebotar M. A. Functional identities with r-indenpendent coefficients[J]. Comm Algebra, 2002, 30(12): 5725-5755.

[8]

Bresar M. Centralizing mappings and derivations in prime rings[J]. J Algebra, 1993, 156, 385-394.

[9]

Bresar M., Vukman J. On certain subrings of prime rings with derivations[J]. J Austral Math Soc Series A, 1993, 54, 133-141.

[10]

Chebotar M A. On certain subrings and ideals of prime rings[C]. In: First International Tainan-Moscow Algebra Workshop. Walter de Gruyter, 1994. 177–180.

[11]

Chebotar M. A., Lee P. H. On certain subgroups of prime rings with derivations[J]. Comm Algebra, 2001, 29(7): 3083-3087.

[12]

Hvala B. Generalized derivations in rings [J]. Comm Algebra, 1998, 26(4): 1147-1166.

[13]

Albas E., Argac N. Generalized derivations of prime rings[J]. Algebra Colloquium, 2004, 11(3): 399-410.

[14]

Beidar K. I., Martindale W. S., Mikhalev A. V. Rings with Generalized Identities[M]. 1996, New York: Marcel Dekker, INC.

[15]

Bresar M. Functional identities of degree two[J]. J Algebra, 1995, 172, 690-720.

[16]

Lee T. K. Generalized derivations of left faithful rings[J]. Comm Algebra, 1999, 27(8): 4057-4073.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/