PDF
Abstract
Let R be a ring, a,b ∈ R, (D,α) and (G,β) be two generalized derivations of R. It is proved that if aD(x) = G(x)b for all x ∈ R, then one of the following possibilities holds: (i) If either a or b is contained in C, then α = β = 0 and there exist p,q∈Q r(RC) such that D(x) = px and G(x) = qx for all x∈R; (ii) If both a and b are contained in C, then either a = b = 0 or D and G are C -linearly dependent; (iii) If neither a nor b is contained in C, then there exist p,q∈Q r(RC) and w∈Q r (R) such that α(x) = [q,x]_and β(x) = [x,p]_for all x∈R, whence D(x) = wx−xq and G(x) = xp + avx with v∈ C and aw−pb = 0.
Keywords
prime ring
/
right Martindale quotient ring
/
extended centroid
/
generalized derivation
Cite this article
Download citation ▾
Wei Wu, Zhaoxun Wan.
Generalized derivations in prime rings.
Transactions of Tianjin University, 2011, 17(1): 75-78 DOI:10.1007/s12209-011-1497-4
| [1] |
Posner H. C. Derivations in prime rings[J]. Proc Amer Math Soc, 1957, 8, 1093-1100.
|
| [2] |
Herstein I. N. A note on derivations[J]. Canad Math Bull, 1978, 21(3): 369-370.
|
| [3] |
Lanski C. A note on GPIS and their coefficients[J]. Proc Amer Math Soc, 1986, 98(1): 17-19.
|
| [4] |
Lanski C. Differential identities, Lie ideals, and Posner’s Theorems[J]. Pac J Math, 1988, 134(2): 275-297.
|
| [5] |
Passman H. Infinite Crossed Products[M]. 1989, San Diego: Academic Press.
|
| [6] |
Lanski C. Derivations with nilpotent values on left ideals[J]. Comm Algebra, 1994, 22(4): 1305-1320.
|
| [7] |
Beidar K. I., Bresar M., Chebotar M. A. Functional identities with r-indenpendent coefficients[J]. Comm Algebra, 2002, 30(12): 5725-5755.
|
| [8] |
Bresar M. Centralizing mappings and derivations in prime rings[J]. J Algebra, 1993, 156, 385-394.
|
| [9] |
Bresar M., Vukman J. On certain subrings of prime rings with derivations[J]. J Austral Math Soc Series A, 1993, 54, 133-141.
|
| [10] |
Chebotar M A. On certain subrings and ideals of prime rings[C]. In: First International Tainan-Moscow Algebra Workshop. Walter de Gruyter, 1994. 177–180.
|
| [11] |
Chebotar M. A., Lee P. H. On certain subgroups of prime rings with derivations[J]. Comm Algebra, 2001, 29(7): 3083-3087.
|
| [12] |
Hvala B. Generalized derivations in rings [J]. Comm Algebra, 1998, 26(4): 1147-1166.
|
| [13] |
Albas E., Argac N. Generalized derivations of prime rings[J]. Algebra Colloquium, 2004, 11(3): 399-410.
|
| [14] |
Beidar K. I., Martindale W. S., Mikhalev A. V. Rings with Generalized Identities[M]. 1996, New York: Marcel Dekker, INC.
|
| [15] |
Bresar M. Functional identities of degree two[J]. J Algebra, 1995, 172, 690-720.
|
| [16] |
Lee T. K. Generalized derivations of left faithful rings[J]. Comm Algebra, 1999, 27(8): 4057-4073.
|