Stochastic bifurcation of rectangular thin plate vibration system subjected to axial inplane gaussian white noise excitation

Gen Ge , Hongli Wang , Jia Xu

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 13 -19.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 13 -19. DOI: 10.1007/s12209-011-1490-y
Article

Stochastic bifurcation of rectangular thin plate vibration system subjected to axial inplane gaussian white noise excitation

Author information +
History +
PDF

Abstract

A stochastic nonlinear dynamical model is proposed to describe the vibration of rectangular thin plate under axial inplane excitation considering the influence of random environment factors. Firstly, the model is simplified by applying the stochastic averaging method of quasi-nonintegrable Hamilton system. Secondly, the methods of Lyapunov exponent and boundary classification associated with diffusion process are utilized to analyze the stochastic stability of the trivial solution of the system. Thirdly, the stochastic Hopf bifurcation of the vibration model is explored according to the qualitative changes in stationary probability density of system response, showing that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simple way on the potential applications of stochastic stability and bifurcation analysis.

Keywords

rectangular thin plate / stochastic stability / stochastic Hopf bifurcation

Cite this article

Download citation ▾
Gen Ge, Hongli Wang, Jia Xu. Stochastic bifurcation of rectangular thin plate vibration system subjected to axial inplane gaussian white noise excitation. Transactions of Tianjin University, 2011, 17(1): 13-19 DOI:10.1007/s12209-011-1490-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe A., Kobayashi Y., Yamada G. Two-mode response of simply supported, rectangular laminated plates[J]. International Journal of Nonlinear Mechanics, 1998, 33(4): 675-690.

[2]

Chang S. I., Bajaj A. K., Krousgrill C. M. Nonlinear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance[J]. Nonlinear Dynamics, 1993, 4(5): 433-460.

[3]

Zhang W., Liu Zhaomiao. Global dynamics of a parametrically and externally excited thin plate[J]. Nonlinear Dynamics, 2001, 24(3): 245-268.

[4]

Yu Pei, Zhang Wei, Bi Qinsheng. Vibration analysis on a thin plate with the aid of computation of normal forms[J]. International Journal of Nonlinear Mechanics, 200, 36(4): 597–627.

[5]

Holmes P. J. Bifurcations to divergence and flutter in flow-induced oscillations: A finite-dimensional analysis[J]. Journal of Sound and Vibration, 1977, 53(4): 161-174.

[6]

Holmes P. J., Marsden J. E. Bifurcations to divergence and flutter in flow-induced oscillations: An infinite-dimensional analysis[J]. Automatica, 1978, 14(4): 367-384.

[7]

Holmes P. J. Center manifolds, normal forms and bifurcations of vector fields with application to coupling between periodic and steady motions[J]. Physica D: Nonlinear Phenomena, 1981, 2(3): 449-481.

[8]

Ge G., Wang H., Xu Jia. Stochastic stability and bifurcation for a thin rectangular plate subjected to in-plane stochastic parametrical excitation[J]. Journal of Vibration and Shock, 2009, 28(9): 91-95.

[9]

Zhu Weiqiu. Nonlinear Stochastic Dynamics and Control: Framework of Hamiltonian Theory[M]. 2003, Beijing, China: Science Press.

[10]

Zhu Weiqiu. Random Vibration[M]. 1992, Beijing, China: Science Press.

[11]

Zhu W. Q., Yang Y. Q. Stochastic averaging of quasinonintegrable Hamiltonian systems[J]. Journal of Applied Mechanics, 1997, 64(1): 975-984.

[12]

Zhu W. Q., Huang Z. L. Suzuki. Stochastic averaging and Lyapunov exponent of quasi-partially-integrable Hamiltonian systems[J]. International Journal of Nonlinear Mechanics, 2002, 37(3): 419-437.

[13]

Zhu W. Q., Huang Z. L. Stochastic stability of quasinonintegrable Hamiltonian systems[J]. Journal of Sound and Vibration, 1998, 218(5): 769-789.

[14]

Zhu W. Q. Feedback stabilization of quasi-nonintegrable Hamiltonian systems by using Lyapunov exponent[J]. Nonlinear Dynamics, 2004, 36(4): 55-70.

[15]

Porsezian K. Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chain[J]. Chaos, Solitons & Fractals, 1998, 9(10): 1709-1722.

[16]

Richter H., Stein Gunter. On Taylor series expansion for chaotic nonlinear systems[J]. Chaos, Solitons & Fractals, 2002, 13(9): 1783-1789.

[17]

Zhu W. Q., Huang Z. L. Stochastic Hopf bifurcation of quasi-nonintegrable Hamiltonian systems[J]. International Journal of Nonlinear Mechanics, 1999, 34(3): 437-447.

[18]

Zhu W. Q. Lyapunov exponent and stochastic stability of quasi-nonintegrable Hamiltonian system[J]. International Journal of Nonlinear Mechanics, 2004, 39(5): 879-895.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/