Dynamic stability analysis of cages in high-speed oil-lubricated angular contact ball bearings

Xiuhai Liu , Sier Deng , Hongfei Teng

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 20 -27.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 20 -27. DOI: 10.1007/s12209-011-1487-6
Article

Dynamic stability analysis of cages in high-speed oil-lubricated angular contact ball bearings

Author information +
History +
PDF

Abstract

To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.

Keywords

dynamic analysis / high-speed angular contact ball bearing / cage / stability / simulation

Cite this article

Download citation ▾
Xiuhai Liu, Sier Deng, Hongfei Teng. Dynamic stability analysis of cages in high-speed oil-lubricated angular contact ball bearings. Transactions of Tianjin University, 2011, 17(1): 20-27 DOI:10.1007/s12209-011-1487-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walter C. T. The dynamics of ball bearings[J]. Journal of Lubrication Technology, 1971, 93(1): 1-10.

[2]

Gupta P. K. Dynamics of rolling element bearings. Parts I, II, III and IV[J]. Journal of Lubrication Technology, 1979, 101(3): 293-326.

[3]

Gupta P. K. Advanced Dynamics of Rolling Elements[M]. 1984, New York: Springer Verlag.

[4]

Meeks C. R., Ng K. O. The dynamics of ball separators in ball bearings (Part I): Analysis[J]. Tribology Transactions, 1985, 28(3): 277-287.

[5]

Meeks C. R., Tran L. Ball bearing dynamic analysis using computer methods (Part I): Analysis[J]. Journal of Tribology, 1996, 118(1): 52-58.

[6]

Ghaisas N., Wassgren C. R., Sadeghi F. Cage instabilities in cylindrical roller bearings[J]. Journal of Tribology, 2004, 126(4): 681-689.

[7]

Sakaguchi T., Harada K. Dynamic analysis of cage behavior in a tapered roller bearing[J]. Journal of Tribology, 2006, 128(3): 604-611.

[8]

Chen G., Li J., Zhang C. Analysis of the interaction between high speed bearing components[J]. Mechanical Science and Technology, 1998, 17(2): 268-270.

[9]

Cui L., Wang L., Zheng D., et al. Analysis on dynamic characteristics of aero-engine high-speed roller bearings [J]. Acta Aeronautica ET Astronautica Sinica, 2008, 29(2): 492-498.

[10]

Li J., Wu L. Dynamic simulation of high-speed roller bearings[J]. Journal of Aerospace Power, 1993, 8(2): 112-116.

[11]

Yang X., Liu W., Li X. Dynamics analysis on cage of high speed roller bearing[J]. Bearing, 2002, 7, 1-5.

[12]

Zhang C., Cheng G., Li J. Dynamic analysis of high speed roller bearings[J]. Mechanical Science and Technology, 1997, 16(7): 136-139.

[13]

Luo Z., Wu L., Sun X., et al. Quasidynamic analysis of high speed thrust ball bearings[J]. Journal of Aerospace Power, 1996, 11(3): 257-260.

[14]

Wang L., Cui L., Zheng D., et al. Analysis on dynamic characteristics of aero-engine high-speed ball bearings[J]. Acta Aeronautica ET Astronautica Sinica, 2007, 28(6): 1461-1467.

[15]

Deng S., Hao J., Teng H., et al. Dynamics analysis on cage of angular contact ball bearings[J]. Bearing, 2007, 10, 1-5.

[16]

Harris T. A. Rolling Rearing Analysis[M]. 2001, New York: John Wiley.

[17]

Herbert R. G., McWhannell D. C. Shape and frequency composition of pulses from an impact pair[J]. Journal of Engineering for Industry, 1977, 99(3): 513-518.

[18]

Hunt K. H., Crossley F. R. E. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics, 1975, 42(2): 440-445.

[19]

Sarangi M., Majumdar B. C., Sekhar A. S. Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect (Part 1 and 2)[J]. Journal of Engineering Tribology, 2004, 218(6): 529-547.

[20]

Houpert L. Numerical and analytical calculations in ball bearings [C]. In: Proceedings of the 8th European Space Mechanisms and Tribology Symposium. Toulouse, France, 1999. 283–290.

[21]

Chittenden R. J., Dowson D., Dunn J. F., et al. A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts (II): General case with lubricant entrainment along either principal axis of the Hertzian contact ellipse or at some intermediate angle[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1985, 397(1813): 271-294.

[22]

Gupta P. K., Cheng H. S., Zhu D., et al. Viscoelastic effects in MIL-L-7808-Type lubricant (Part I): Analytical formulation[J]. Tribology Transactions, 1992, 35(2): 269-274.

[23]

Hamrock B. J., Schmid S. R., Jacobson B. O. Fundamentals of Fluid Film Lubrication[M]. 2004, New York: Marcell Dekker, Inc.

[24]

Wang Y. S., Yang B. Y., Wang L. Q. Investigation into the traction coefficient in elastohydrodynamic lubrication[J]. TriboTest, 2004, 11(2): 113-124.

[25]

Cameron A. Basic Lubrication Theory [M]. 1981, Chichester: Ellis Horwood Ltd.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/