Active control of free paraboloidal membrane shells using photostrictive actuators

Xinjie Wang , Honghao Yue , Zongquan Deng

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 6 -12.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (1) : 6 -12. DOI: 10.1007/s12209-011-1469-8
Article

Active control of free paraboloidal membrane shells using photostrictive actuators

Author information +
History +
PDF

Abstract

The paraboloidal membrane shell with free boundary condition is actively controlled using photostrictive actuators which can provide contactless actuation under the illumination of ultraviolet light. The governing equations of the paraboloidal shell laminated with paired photostrictive actuators are established based on membrane approximation. The modal control actions of meridional/circumferential actuators are respectively formulated and evaluated by case studies. Constant light intensity related to the velocity of the shell is adopted, and then the governing equations are written in a closed-loop form which can be solved with Newmark-β method. Considering the multi-field coupling behavior of photostrictive actuators, time histories of transverse displacement and control light intensity are simulated and evaluated. The results show that photostrictive actuators can effectively control the vibration of the paraboloidal membrane shell, and the photostrictive actuators oriented along circumferential direction can give better control effect than photostrictive actuators placed along the meridional direction.

Keywords

photostrictive actuator / paraboloidal shell / active control / membrane approximation

Cite this article

Download citation ▾
Xinjie Wang, Honghao Yue, Zongquan Deng. Active control of free paraboloidal membrane shells using photostrictive actuators. Transactions of Tianjin University, 2011, 17(1): 6-12 DOI:10.1007/s12209-011-1469-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tzou H. S., Ding J. H. Actuator placement and microactuation efficiency of adaptive paraboloidal shells[J]. Journal of Dynamic Systems, Measurement and Control, 2003, 125(4): 577-584.

[2]

Ding J. H., Tzou H. S. Micro-electromechanics of sensor patches on free paraboloidal shell structronic systems[J]. Mechanical Systems and Signal Process, 2004, 18(2): 367-380.

[3]

Yue H. H., Deng Z. Q., Tzou H. S. Distributed signal analysis of free-floating paraboloidal membrane shells[J]. Journal of Sound and Vibration, 2007, 304(3–5): 625-639.

[4]

Yue H. H., Deng Z. Q., Tzou H. S. Optimal actuator locations and precision micro-control actions on free paraboloidal membrane shells[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(10): 2298-2307.

[5]

Yue H. H., Deng Z. Q., Tzou H. S. Spatially distributed modal signals of free shallow membrane shell structronic system[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(9): 2041-2050.

[6]

Tzou H. S., Liu B. J., Cseledy D. Optopiezothermoelastic actions and micro-control sensitivity analysis of cylindrical opto-mechanical shell actuators[J]. Journal of Theoretical and Applied Mechanics, 2002, 40(3): 775-796.

[7]

Sun D., Tong L. Modeling of wireless remote shape control for beams using nonlinear photostrictive actuators[J]. International Journal of Solids and Structures, 2007, 44(2): 672-684.

[8]

Uchino K. Photostrictive actuator[C]. In: Proceedings of IEEE Ultrasonics Symposium. Honolulu, USA, 1990. 721–723.

[9]

Fukuda T, Hattori S, Arai F et al. Characteristics of optical actuator-servomechanisms using bimorph optical piezoelectric actuator[C]. In: Proceedings of IEEE International Conference on Robotics and Automation. Atlanta, USA, 1993. 618–623.

[10]

Fukuda T., Hattori S., Arai F., et al. Performance improvement of optical actuator by double side irradiation [J]. IEEE Transactions on Industrial Electronics, 1995, 42(5): 455-461.

[11]

Morikawa Y, Nakada T. Position control of PLZT bimorph-type optical actuator by on-off control[C]. In: Proceedings of the 23rd International Conference on Industrial Electronics, Control and Instrumentation. New Orleans, USA, 1997. 1403–1408.

[12]

Poosanaas P., Tonooka K., Uchino K. Photostrictive actuators[J]. Mechatronics, 2000, 10(4/5): 467-487.

[13]

Liang L, Wang S, Cao F. Research on dynamic characteristic of optical drive servo system with PLZT[C]. In: Proceedings of the Sixth International Symposium on Instrumentation and Control Technology. Beijing, China, 2006. 63573T1–63573T6.

[14]

Sun D., Tong L. Theoretical investigation on wireless vibration control of thin beams using photostrictive actuators[J]. Journal of Sound and Vibration, 2008, 312(1/2): 182-194.

[15]

Tzou H. S., Chou C. S. Nonlinear opto-electromechanics and photodeformation of optical actuators[J]. Smart Materials and Structures, 1996, 5(2): 230-235.

[16]

Shih H. R., Tzou H. S., Saypuri M. Structural vibration control using spatially configured opto-electromechanical actuators[J]. Journal of Sound and Vibration, 2005, 284(1/2): 361-378.

[17]

Wang X. J., Yue H. H., Tzou H. S., et al. Actuation characteristics and control of thin cylindrical shells laminated with photostrictive actuators[J]. Journal of Vibration and Shock, 2009, 28(9): 9-14.

[18]

Shih H. R., Tzou H. S. Photostrictive actuators for photonic control of shallow spherical shells[J]. Journal of Smart Materials and Structures, 2007, 16, 1712-1717.

[19]

Shih H R, Tzou H S. Wireless control of parabolic shells using photostrictive actuators[C]. In: Proceedings of IMECE’2006. Chicago, USA, 2006. 1507–1516.

[20]

Tzou H. S. Piezoelectric Shells[M]. 1993, Boston, USA: Kluwer Academic Publishers.

[21]

Zhang Yimin. Mechanical Vibration[M]. 2007, Beijing, China: Tsinghua University Press.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/