Time series of EIT measurements and images during lung ventilation based on principal component analysis

Wenru Fan , Huaxiang Wang , Chengyi Yang , Shiwen Ma

Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (5) : 366 -372.

PDF
Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (5) : 366 -372. DOI: 10.1007/s12209-010-1455-6
Article

Time series of EIT measurements and images during lung ventilation based on principal component analysis

Author information +
History +
PDF

Abstract

The aim of this paper is to propose a useful method for exploring regional ventilation and perfusion in the chest and also separation of pulmonary and cardiac changes. The approach is based on estimating both electrical impedance tomography (EIT) measurements and reconstructed images by means of principal component analysis (PCA). In the experiments in vivo, 43 cycles of heart-beat rhythm could be detected by PCA when the volunteer held breath; 9 breathing cycles and 50 heart-beat cycles could be detected by PCA when the volunteer breathed normally. The results indicate that the rhythms of cardiac activity and respiratory process can be exploited and separated through analyzing the boundary measurements by PCA without image reconstruction.

Keywords

electrical impedance tomography / image reconstruction / principal component analysis

Cite this article

Download citation ▾
Wenru Fan, Huaxiang Wang, Chengyi Yang, Shiwen Ma. Time series of EIT measurements and images during lung ventilation based on principal component analysis. Transactions of Tianjin University, 2010, 16(5): 366-372 DOI:10.1007/s12209-010-1455-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hjalmarson O., Sandberg K., Sandberg L. Lung function at term reflects severity of bronchopulmonary dysplasia[J]. The Journal of Pediatrics, 2005, 146(1): 86-90.

[2]

Zhao B., Wang H., Chen X., et al. Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method[J]. Measurement Science and Technology, 2007, 18(11): 3373-3383.

[3]

McArdle F. J., Suggett A. J., Brown B. H., et al. An assessment of dynamic images by applied potential tomography for monitoring pulmonary perfusion[J]. Clinical Physics and Physiological Measurement, 1988, 9(Suppl.A): 87-91.

[4]

Holder D. S. Electrical Impedance Tomography Methods, History and Applications[M]. 2004, England: Taylor & Francis.

[5]

Abascal J. P., Arridge S. R., Atkinson D., et al. Use of anisotropic modelling in electrical impedance tomography: Description of method and preliminary assessment of utility in imaging brain function in the adult human head[J]. Neuro Image, 2008, 43(2): 258-268.

[6]

Shuai W., You F., Zhang W., et al. Image monitoring for an intraperitoneal bleeding model of pigs using electrical impedance tomography[J]. Physiological Measurement, 2008, 29(2): 217-225.

[7]

Frerichs I., Hinz J., Herrmann P., et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging[J]. IEEE Transactions on Medical Imaging, 2002, 21(6): 646-652.

[8]

Leathard A. D., Brown B. H., Campbell J., et al. A comparison of ventilatory and cardiac related changes in EIT images of normal human lungs and of lungs with pulmonary emboli[J]. Physiological Measurement, 1994, 2A A137-A146.

[9]

Chen X., Wang H., Zhao B., et al. Lung ventilation functional monitoring based on electrical impedance tomography[J]. Transactions of Tianjin University, 2009, 15(1): 7-12.

[10]

Nick P., William R. B. L. A Matlab toolkit for threedimensional electrical impedance tomography: A contribution to the electrical impedance and diffuse optical reconstruction software project[J]. Measurement Science and Technology, 2002, 13(12): 1871-1883.

[11]

Vogel C. R. Computational Methods for Inverse Problem[M]. 2002, Philadephia: SIAM.

[12]

Hanke M., Hansen P. C. Conjugate Gradient Type Methods for Ill-posed Problems[M]. 1995, Essex: Longman Scientific & Technical.

[13]

Berrar D. P., Dubitzky W., Granzow M. A Practical Approach to Microarray Data Analysis[M]. 2002, Germany: Springer.

[14]

Vauhkonen P. J., Vauhkonen M., Savolainen T., et al. Three-dimensional electrical impedance tomography based on the complete electrode model[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(9): 1150-1160.

[15]

Wang H., Wang J., Hu L., et al. An image reconstruction algorithm of EIT based on pulmonary prior information[J]. Journal of Tianjin University, 2008, 41(4): 383-388.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/