Fault-tolerant design of spaceborne mass memory system

Yuning Zhang , Liang Chang , Genqing Yang , Huawang Li

Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (1) : 17 -21.

PDF
Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (1) : 17 -21. DOI: 10.1007/s12209-010-0004-7
Article

Fault-tolerant design of spaceborne mass memory system

Author information +
History +
PDF

Abstract

A fault-tolerant spaceborne mass memory architecture is presented based on entirely commercial-off-theshelf components. The highly modularized and scalable memory kernel supports the hierarchical design and is well suited to redundancy structure. Error correcting code (ECC) and periodical scrubbing are used to deal with bit errors induced by single event upset. For 8-bit wide devices, the parallel Reed Solomon(10, 8) can perform coder/decoder calculations in one clock cycle, achieving a data rate of several Gb/s. In space environment, ECC combined with periodical scrubbing is appropriate and it reduces the word error rate by 5 orders of magnitude with 1% timing overhead and small hardware expenditure.

Keywords

fault-tolerant memory architecture / data integrity / parallel Reed-Solomon codec

Cite this article

Download citation ▾
Yuning Zhang, Liang Chang, Genqing Yang, Huawang Li. Fault-tolerant design of spaceborne mass memory system. Transactions of Tianjin University, 2010, 16(1): 17-21 DOI:10.1007/s12209-010-0004-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Harboe-Sørensen R., Guerre F. X., Lewis G. Heavy-ion SEE test concept and results for DDR-II memories[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2125-2130.

[2]

Cardarilli G. C., Ottavi M., Pontarelli S., et al. Fault tolerant solid state mass memory for space applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1353-1372.

[3]

Cardarilli G C, Marinucci P, Ottavi M et al. A fault-tolerant 176 Gbit solid state mass memory architecture[C]. In: Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. Yamanashi, Japan, 2000. 173–180.

[4]

Underwood C. I., Oldfield M. K. Observations on the reliability of COTS-device-based solid state data recorders operating in low-earth orbit[J]. IEEE Transactions on Nuclear Science, 2000, 47(4): 647-653.

[5]

Cardarilli G., Leandri C., Marinucci P., et al. Design of a fault tolerant solid state mass memory[J]. IEEE Transactions on Reliability, 2003, 52(4): 476-491.

[6]

Wilhelm W. A new scalable VLSI architecture for Reed-Solomon decoders[J]. IEEE Journal of Solid-State Circuits, 1999, 34(3): 388-396.

[7]

Parrotta B, Rebaudengo M, Reorda M S et al. New techniques for accelerating fault injection in VHDL descriptions[C]. In: Proceedings of the 6th IEEE International On-Line Testing Workshop. Los Alamitos, CA, USA, 2000. 61–66.

[8]

Cardarilli G C, Ottavi M, Pontarelli S et al. Data integrity evaluations of Reed-Solomon codes for storage systems[C]. In: Proceedings of IEEE International Symposium on Defect Fault Tolerance in VLSI Systems. Cannes, France, 2004. 158–164.

[9]

Saleh A. M., Serrano J. J., Patel J. H. Reliability of scrubbing recovery-techniques for memory systems[J]. IEEE Transactions on Reliability, 1990, 39(1): 114-122.

[10]

Gärtner M, Gliem F, Keller H U. Semiconductor image memory for the MARS 94 Mission[C]. In: Proceedings of the 41st Congress of the International Astronautical Federation. Dresden, GDR, 1990.

[11]

Chowdhury D. R., Gupta I. S., Chaudhuri P. P. CA-based byte error-correcting code[J]. IEEE Transactions on Computers, 1995, 44(3): 371-382.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/