Characteristics of transient outward potassium channel exposed to 3 mT static magnetic field

Gang Li , Lijun Cheng , Xiaoyan Qiao , Ling Lin , Lu Zhang , Yuanyuan Li

Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (5) : 319 -323.

PDF
Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (5) : 319 -323. DOI: 10.1007/s12209-009-0056-8
Article

Characteristics of transient outward potassium channel exposed to 3 mT static magnetic field

Author information +
History +
PDF

Abstract

Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field, and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique. The experiment revealed that the amplitude of transient outward potassium channel current was reduced. The maximum activated current densities of control group and exposure group were 163.62±20.68 pA/pF and 98.74±16.57 pA/pF(n=12, P<0.01)respectively. The static magnetic field exposure affected the activation and inactivation process of transient outward potassium channel current. Due to the magnetic field exposure, the halfactivation voltage of the activation curves changed from 5.59±1.96 mV to 27.87±7.24 mV(n=12, P<0.05), and the slope factor changed from 19.43±2.11 mV to 25.87±4.22 mV(n=12, P<0.05). The half-inactivation voltage of the inactivation curves also changed from −56.09±0.89 mV to −57.16±1.10 mV(n=12, P>0.05)and the slope factor of the inactivation curves from 8.69±0.80 mV to 10.87±1.02 mV(n=12, P<0.05). The results show that the static magnetic field can change the characteristics of transient outward K+ channel, and affect the physiological functions of neurons.

Keywords

transient outward potassium channel current / patch-clamp technique / static magnetic field / biological effect / neurons

Cite this article

Download citation ▾
Gang Li, Lijun Cheng, Xiaoyan Qiao, Ling Lin, Lu Zhang, Yuanyuan Li. Characteristics of transient outward potassium channel exposed to 3 mT static magnetic field. Transactions of Tianjin University, 2009, 15(5): 319-323 DOI:10.1007/s12209-009-0056-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naomi M. S., Frank S. P., Alex W. T. Human exposure to a specific pulsed magnetic field: Effects on thermal sensory and pain thresholds[J]. Neuroscience Letters, 2004, 363(2): 157-162.

[2]

Thomas A. W., White K. P., Drost D. J., et al. A comparison of rheumatoid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed (200 µT) magnetic field: Effects on normal standing balance[J]. Neuroscience Letters, 2001, 309(1): 17-20.

[3]

Pang L. J., Baciu C., Traitcheva N., et al. Photodynamic effect on cancer cells influenced by electromagnetic fields[J]. Journal of Photochemistry and Photobiology B: Biology, 2001, 64(1): 21-26.

[4]

Zhang Y., Ding J., Duan W. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells[J]. Journal of Biological Physics, 2006, 32(1): 1-9.

[5]

Soma S., Babita K., Sher A. Effect of radiofrequency electromagnetic field on human DNA[J]. Defence Science Journal, 2006, 56(2): 199-208.

[6]

Ivan P., Ivancica T. Influence of 864 MHz electromagnetic field on growth kinetics of established cell line[J]. Biologia, 2006, 61(3): 321-325.

[7]

Yawara E., Mari O. I., Shoogo U. Control of orientation of rat Schwann cells using an 8-T static magnetic field[J]. Neuroscience Letters, 2003, 351(2): 130-132.

[8]

Hirose H., Nakahara T., Miyakoshi J. Orientation of human glioblastoma cells embedded in type I collagen, caused by exposure to a 10 T static magnetic field[J]. Neuroscience Letters, 2003, 338(1): 88-90.

[9]

Stefania P., Gabriella B. V., Tullio B., et al. Effect of 0.2 T static magnetic field on human neurons: Remodeling and inhibition of signal transduction without genome instability[J]. Neuroscience Letters, 1999, 267(3): 185-188.

[10]

Rosen A. D. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells[J]. Bioelectromagnetics, 2003, 24(7): 517-523.

[11]

Shen J. F., Chao Y. L., Du L. Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons[J]. Neuroscience Letters, 2007, 415(2): 164-168.

[12]

Mayumi O., Shiro K., Yoshihisa O., et al. Effect of magnetic field exposure on calcium channel currents using patch clamp technique[J]. Bioelectromagnetic, 2002, 23(4): 306-314.

[13]

Huang C. M., Ye H., Xu J. H., et al. Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells[J]. Journal of Biomedical Engineering, 2000, 17(1): 63-65.

[14]

Jolanta J., Janina G., Marek Z., et al. Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: Apoptosis, necrosis and free radical processes[J]. Bioelectrochemistry, 2002, 57(2): 107-111.

[15]

Zhang C. F., Yang P. Zinc-induced aggregation of Aβ(10–21) potentiates its action on voltage-gated potassium channel[J]. Biochemical and Biophysical Research Communications, 2006, 345(1): 43-49.

[16]

Qiu G. Y., Peng Y. X. Biophysics[M]. 2000, Wuhan: Wuhan University Press.

[17]

Auld V. J., Goldin A. L., Krafte D. S., et al. A neutral amino acid change in segment II S4 dramatically alters the gating properties of the voltage dependent sodium channel[J]. Proc Nati Acad Sci USA, 1990, 87(1): 323-327.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/