Femtosecond optical trapping of cells: Efficiency and viability

Jixian Gong , Fang Li , Qirong Xing

Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (5) : 315 -318.

PDF
Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (5) : 315 -318. DOI: 10.1007/s12209-009-0055-9
Article

Femtosecond optical trapping of cells: Efficiency and viability

Author information +
History +
PDF

Abstract

The femtosecond optical trapping capability and the effect of femtosecond laser pulses on cell viability were studied. The maximum lateral velocity at which the particles just failed to be trapped, together with the measured average trapping power, were used to calculate the lateral trapping force (Q-value). The viability of the cells after femtosecond laser trapping was ascertained by vital staining. Measurement of the Q-values shows that femtosecond optical tweezers are just as effective as continuous wave optical tweezers. The experiments demonstrate that there is a critical limit for exposure time at each corresponding laser power of femtosecond optical tweezers, and femtosecond laser tweezers are safe for optical trapping at low power with short exposure time.

Keywords

optical tweezers / femtosecond laser / cell viability

Cite this article

Download citation ▾
Jixian Gong, Fang Li, Qirong Xing. Femtosecond optical trapping of cells: Efficiency and viability. Transactions of Tianjin University, 2009, 15(5): 315-318 DOI:10.1007/s12209-009-0055-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tirlapur U. K., König K. Targeted transfection by femtosecond laser[J]. Nature, 2002, 418(18): 290-291.

[2]

Tirlapur U. K., König K. Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability[J]. Plant J, 2002, 31 365-374.

[3]

Zeira E., Manevitch A., Khatchatouriants A., et al. Femtosecond infrared laser—An efficient and safe in vivo gene delivery system for prolonged expression[J]. Mol Therapy, 2003, 8(2): 342-350.

[4]

Stevenson D., Agate B., Tsampoula X., et al. Femtosecond optical transfection of cells: Viability and efficiency[J]. Opt Express, 2006, 14(16): 7125-7133.

[5]

Shen N., Datta D., Schaffer C. B., et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser microscissors[J]. Mech Chem Biosyst, 2005, 2(1): 17-26.

[6]

Watanabe W., Arakawa N., Matsunaga S., et al. Femtosecond laser disruption of subcellular organelles in a living cell[J]. Opt Express, 2004, 12(18): 4203-4213.

[7]

Ashkin A., Dziedzic J. M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517-1520.

[8]

Lim C. T., Dao M., Suresh S., et al. Large deformation of living cells using laser traps[J]. Acta Materialia, 2004, 52(7): 1837-1845.

[9]

Simpsona K. H., Bowdenb M. G., Peacockc S. J., et al. Adherence of Staphylococcus aureus fibronectin binding protein A mutants: An investigation using optical tweezers[J]. Biomol Eng, 2004, 21(3–5): 105-111.

[10]

Xie C. G., Chen D., Li Y. Q. Raman sorting and identification of single living micro-organisms with optical tweezers[J]. Opt Lett, 2005, 30(14): 1800-1803.

[11]

Bayoudh S., Mehta M., Rubinszteindunlop H., et al. Micromanipulation of chloroplasts using optical tweezers[J]. Journal of Microscopy, 2001, 230(2): 214-222.

[12]

Meimberg H., Thalhammer S., Brachmann A., et al. Selection of chloroplasts by laser microbeam microdissection for single-chloroplast PCR[J]. BioTechniques, 2003, 34(6): 1238-1243.

[13]

Liu X. H., Wang H. W., Li Y. M., et al. Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap[J]. J of Biotechnol, 2004, 109(3): 217-226.

[14]

Zhuang X. Unraveling DNA condensation with optical tweezers[J]. Science, 2004, 305(5681): 188-190.

[15]

Onoa B., Dumont S., Liphardt J., et al. Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme[J]. Science, 2003, 299(5614): 1892-1895.

[16]

Mallik R., Carter B. C., Lex S. A., et al. Cytoplasmic dynein functions as a gear in response to load[J]. Nature, 2004, 427(6975): 649-652.

[17]

Abbondanzieri E. A., Greenleaf W. J., Shaevitz J. W., et al. Direct observation of base-pair stepping by RNA poly merase[J]. Nature, 2005, 438(7067): 460-465.

[18]

Cecconi C., Shank E. A., Bustamante C., et al. Direct observation of the three-state folding of a single protein molecule[J]. Science, 2005, 309(5743): 2057-2060.

[19]

Xing Q., Mao F., Chai L., et al. Numerical modeling and theoretical analysis of femtosecond laser tweezers[J]. Opt Laser Technol, 2004, 36(8): 635-639.

[20]

Agate B., Brown C. T. A., Sibbett W., et al. Femtosecond optical tweezers for in-situ control of two-photon fluorescence[J]. Opt Express, 2004, 12(13): 3011-3017.

[21]

Mao F., Xing Q., Wang K., et al. Optical trapping of red blood cells and two-photon excitation-based photodynamic study using a femtosecond laser[J]. Opt Commun, 2005, 256(4–6): 358-363.

[22]

Neuman K. C., Chadd E. H., Liou G. F., et al. Characterization of photodamage to Escherichia coli in optical traps[J]. Biophys J, 1999, 77(5): 2856-2863.

[23]

Leitz G., Fällman E., Tuck S., et al. Stress response in caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence[J]. Biophys J, 2002, 82(4): 2224-2231.

[24]

Dong Q. L., Zhao X. M. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma[J]. Catal Today, 2004, 98(4): 537-544.

[25]

Felgner H., Muller O., Schliwa M. Calibration of light forces in optical tweezers[J]. Appl Opt, 1995, 34(6): 977-982.

[26]

Vogel A., Noack J., Huttmann G., et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Appl Phys B, 2005, 81(8): 1015-1047.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/