Novel electro-optical modulator utilizing GeO2-doped silica waveguide

Jiusheng Li , Dagong Jia

Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (3) : 222 -224.

PDF
Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (3) : 222 -224. DOI: 10.1007/s12209-009-0039-9
Article

Novel electro-optical modulator utilizing GeO2-doped silica waveguide

Author information +
History +
PDF

Abstract

In order to achieve a modulator with broad bandwidth and perfect impedance match, a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed. The finite element model of the whole electro-optical modulator is established by means of ANSYS. With the finite element method analysis, the performance of the novel modulator is predicted. The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz·cm, and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength. Moreover, the calculated electrical reflected power of coplanar waveguide electrode is below −20 dB in the frequency ranging from 45 MHz to 65 GHz. Therefore, the designed modulator has wide modulation bandwidth and perfect impedance match.

Keywords

optical modulator / GeO2-doped silica / finite element method

Cite this article

Download citation ▾
Jiusheng Li, Dagong Jia. Novel electro-optical modulator utilizing GeO2-doped silica waveguide. Transactions of Tianjin University, 2009, 15(3): 222-224 DOI:10.1007/s12209-009-0039-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee M., Katz H. E., Erben C., et al. Broadband modulation of light by using an electro-optic polymer[J]. Science, 2002, 298 1401-1403.

[2]

Shi Y. Q., Zhang C., Zhang H., et al. Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape[J]. Science, 2000, 288 119-122.

[3]

Howerton M. M., Moeller R. P., Greenblatt A. S., et al. Fully packaged, broad-band LiNbO3 modulator with low drive voltage[J]. IEEE Photonics Technol Lett, 2000, 12(7): 792-794.

[4]

Rahman B. M. A., Haxha S. Optimization of microwave properties for ultrahigh-speed etched and unetched lithium niobate electro-optic modulators[J]. J Lightwave Technol, 2002, 20(10): 1856-1863.

[5]

Bao Z., Zhou H., Li Jiusheng. Finite element method analysis of a novel traveling wave optical modulator based on LiNbO3 fibers[J]. J Tianjin Univ, 2005, 38(8): 730-734.

[6]

Wang Y., Su Hansong. Analysis of optical fiber type traveling-wave modulator with CPW electrode based on FEM[J]. Electronic Measurement Technology, 2006, 29(1): 31-32.

[7]

Ozcan A., Digonnet M. J. F., Kina G. S. Characterization of thermally poled germanosilicate thin films[J]. Optics Express, 2004, 12(20): 4698-4708.

[8]

Ren Y. T., Marckmann C. J., Arentoft J., et al. Thermally poled channel waveguides with polarization-independent electro-optic effect[J]. IEEE Phtonics Technol Lett, 2002, 14(5): 639-641.

[9]

Aucel P. R., Masse D. J., Hartwig C. P. Losses in microstrip[J]. IEEE Trans Microwave Theory Technol, 1968, 16(6): 342-350.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/