Chaos existence in surface discharge of tracking test

Boxue Du , Dianshuai Dong , Xiaolei Zheng

Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (3) : 168 -172.

PDF
Transactions of Tianjin University ›› 2009, Vol. 15 ›› Issue (3) : 168 -172. DOI: 10.1007/s12209-009-0030-5
Article

Chaos existence in surface discharge of tracking test

Author information +
History +
PDF

Abstract

Tracking tests for different polymer materials were carried out to investigate the chaotic behavior of surface discharge. The discharge sequences measured during the discharge process were analyzed for finding the evidence of chaos existence. Four kinds of nonlinear analysis methods were adopted: estimating the largest Lyapunov exponent, calculating the fractal dimension with increasing the embedding dimension, drawing the recurrence plots, and plotting the Poincaré maps. It is found that the largest Lyapunov exponent of the discharge is positive, and the plot of fractal dimension, as a function of embedding dimension, will saturate at a value. The recurrence plots show the chaotic frame-work patterns, and the Poincaré maps also have the chaotic characteristics. The results indicate that the chaotic behavior does exist in the discharge currents of the tracking test.

Keywords

chaos / Lyapunov exponent / fractal dimension / recurrence plot / Poincaré map / tracking

Cite this article

Download citation ▾
Boxue Du, Dianshuai Dong, Xiaolei Zheng. Chaos existence in surface discharge of tracking test. Transactions of Tianjin University, 2009, 15(3): 168-172 DOI:10.1007/s12209-009-0030-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IEC Pub. 60112. Method for the Determination of the Proof and the Comparative Tracking Indices of Solid Insulating Materials [S]. 4th Ed. 2003.

[2]

Du B. X. Discharge energy and DC tracking resistance of organic insulating materials[J]. IEEE Trans Dielectr Electr Insul, 2001, 8(6): 897-901.

[3]

Du B. X., Kobayashi S. Effects of the content of flame retardant on the surface discharge of polycarbonate[J]. Trans IEE Japan, 2002, 122-A(4): 404-408.

[4]

Yoshimura N., Kumagai S., Du B. X. Research in Japan on the tracking phenomenon of electrical insulating materials[J]. IEEE Elect Insul Mag, 1997, 13(5): 8-19.

[5]

Takada T., Miyake H., Tanaka Y. Pulse acoustic technology for measurement of charge distribution in dielectric materials for spacecraft[J]. IEEE Trans Plasma Science, 2006, 34(5): 2176-2184.

[6]

Nikonov V., Bartrukas R., Wertheimer M. R. The influence of dielectric surface charge distribution upon the partial discharge behavior in short air gaps[J]. IEEE Trans Plasma Science, 2001, 29(6): 866-874.

[7]

Kim K Y, Lee C, Kim P J et al. Dielectric properties on the radiation and thermal aged PEE [C]. In: Proceedings of IEEE Int Conf Solid Dielectr, 2004. 332–335.

[8]

Kim H. S., Eykholt R., Salas J. D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D, 1999, 127 48-60.

[9]

Wolf A., Swift J. B., Swinney H. L. Determining Lyapunov exponents from a time series[J]. Physica D, 1985, 16 285-317.

[10]

Takens F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898 366-381.

[11]

Rosenstein M. T., Collins J. J., de Luca C. J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65 117-134.

[12]

Grassberger P., Procacia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9 189-208.

[13]

Eckmann J P, Kamphorst S O, Ruelle D. Recurrence plots of dynamical systems [J]. Europhys Lett, 1987(4): 973–977.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/