Evaluation of energy saving operational modes for industrial fracture connected processes on the basis of incubation time fracture criterion

Bratov Vladimir , Petrov Yuri

Transactions of Tianjin University ›› 2008, Vol. 14 ›› Issue (Suppl 1) : 476 -482.

PDF
Transactions of Tianjin University ›› 2008, Vol. 14 ›› Issue (Suppl 1) : 476 -482. DOI: 10.1007/s12209-008-0081-z
Article

Evaluation of energy saving operational modes for industrial fracture connected processes on the basis of incubation time fracture criterion

Author information +
History +
PDF

Abstract

A problem for a central crack in a plate subjected to plane strain conditions is investigated. Mode I crack loading is created by a dynamic pressure pulse applied at a large distance from the crack. It was found that for a certain combination of amplitude and duration of the pulse applied, the energy transmitted to the sample has a strongly marked minimum, meaning that with the pulse amplitude or duration moving away from the optimal values, minimum energy required for initiation of crack growth increases rapidly. The results obtained indicate a possibility to optimise energy consumption of different industrial processes connected with fracture. Much could be gained in, for example, drilling or rock pounding where energy input accounts for the largest part of the process cost. Presumably further investigation of the effect observed can make it possible to predict optimal energy saving parameters, i.e. frequency and amplitude of impacts, for industrial devices, e.g. bores, grinding machines, and hence significantly reduce the process cost. The prediction can be given based on the parameters of the media fractured (material parameters, prevalent crack length and orientation, etc.).

Keywords

fracture / energy saving / incubation time fracture criterion

Cite this article

Download citation ▾
Bratov Vladimir, Petrov Yuri. Evaluation of energy saving operational modes for industrial fracture connected processes on the basis of incubation time fracture criterion. Transactions of Tianjin University, 2008, 14(Suppl 1): 476-482 DOI:10.1007/s12209-008-0081-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Royal Dutch Petroleum Company Annual Report 2003 [R]. 2003.

[2]

ABAQUS User Manual [M]. Version 6.4, Hibbit, Karlson & Sorensen, Inc.

[3]

Morozov N., Petrov Y.. Dynamics of Fracture[M]. 2000, Berlin-Hidelberg-New York: Springer-Velrag.

[4]

Petrov Y., Taraban V.. On double-criterion models of the fracture of brittle materials[J]. St.-Petersburg University Mechanics Bulletin, 1997, 2 78-81.

[5]

Petrov Y. V., Utkin A. A.. On the rate dependences of dynamic fracture toughness[J]. Soviet Material Science, 1989, 25(2): 153-156.

[6]

Petrov Y. V., Morozov N. F.. On the modeling of fracture of brittle solids[J]. ASME J Appl Mech, 1994, 61 710-712.

[7]

Bratov V., Gruzdkov A., Krivosheev S., et al. Energy balance in the crack growth initiation under pulsed-load conditions[J]. Doklady Physics, 2004, 49(5): 338-341.

[8]

Bratov V., Petrov Y.. Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth[J]. International Journal of Solids and Structures, 2007, 44 2371-2380.

[9]

Petrov Y. V.. On “quantum” nature of dynamic fracture of brittle solids[J]. Dokl Akad Nauk USSR, 1991, 321(1): 66 68 [Sov. Phys. Dokl. 36, 802 (1991)]

[10]

Petrov Y. V., Morozov N. F., Smirnov V. I.. Structural macromechanics approach in dynamics of fracture[J]. Fatigue Fract Engng Mater Struct, 2003, 26 363-372.

[11]

Petrov Y., Sitnikova E.. Temperature dependence of spall strength and the effect of anomalous melting temperatures in shock-wave loading[J]. Technical. Physics, 2005, 50 1034-1037.

[12]

Irwin G.. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957, 24 361-364.

[13]

Ravi-Chandar K., Knauss W. G.. An experimental investigation into dynamic fracture[J]. International Journal of Fracture, 1984, 25 247-262.

[14]

Dally J. W., Barker D. B.. Dynamic measurements of initiation toughness at high loading rates[J]. Experimental Mechanics, 1988, 28 298-303.

[15]

Smith G C. An Experimental Investigation of the Fracture of a Brittle Material[D]. California Institute of Technology, 1975.

[16]

Petrov Y. V.. Incubation time criterion and the pulsed strength of continua: Fracture, cavitation, and electrical breakdown[J]. Doklady Physics, 2004, 49 246-249.

[17]

Freund L. B., Clifton R.. On the uniqueness of plane elastodynamic solutions for running cracks[J]. Journal of Elasticity, 1974, 4 293-299.

[18]

Freund L. B.. Dynamic Fracture Mechanics[M]. 1990, Cambridge: Cambridge Press.

[19]

Owen D. M., Zhuang S., Rosakis A. J., et al. Experimental determination of dynamic crack initiation and propagation fracture toughness in aluminum sheets[J]. International Journal of Fracture, 1998, 90 153-174.

[20]

Shockey D. A., Erlich D. C., Kalthoff J. F., et al. Short pulse fracture mechanics[J]. Journal of Engineering Fracture Mechanics, 1986, 23 311-319.

[21]

Zlatin N. A., Pugachev G. S.. Temporal dependency of metal strength[J]. Solid State Physics, 1975, 17 2599-2602.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/