Experimental study of sediment incipience under complex flows

Chunrong Liu , Liying Deng , Zhenhua Huang , Aode Huhe

Transactions of Tianjin University ›› 2008, Vol. 14 ›› Issue (4) : 300

PDF
Transactions of Tianjin University ›› 2008, Vol. 14 ›› Issue (4) : 300 DOI: 10.1007/s12209-008-0051-5
Article

Experimental study of sediment incipience under complex flows

Author information +
History +
PDF

Abstract

Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field downstream of a backward-facing step. Instantaneous flow velocity fields were measured by using Particle Image Velocimetry (PIV), and an image processing method for determining probability of sediment incipience was employed to analyze the experimental data. The experimental results showed that the probability of sediment incipience was the highest near the reattachment point, even though the near-wall instantaneous flow velocity and the Reynolds stress were both much higher further downstream of the backward-facing step. The possible mechanisms are discussed for the sediment incipience near the reattachment point.

Keywords

sediment transport / local scour / complex flows / particle image velocimetry / sediment incipience

Cite this article

Download citation ▾
Chunrong Liu, Liying Deng, Zhenhua Huang, Aode Huhe. Experimental study of sediment incipience under complex flows. Transactions of Tianjin University, 2008, 14(4): 300 DOI:10.1007/s12209-008-0051-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shields A F. Anwendung der Ähnlichkeitsmechanik und Turbulenzforschung auf Geschiebebewegung [R]. Mitteilungen der Preuss. Versuchsanst F. Wasserbau u. Schiffbau, Heft 26, Berlin.1936(in German)

[2]

Buffington J. M.. The legend of A. F. Shields[J]. Journal of Hydraulic Engineering, ASCE, 1999, 125(4): 376-387.

[3]

Rijn L. C. V.. Sediment transport (Part III): Bed forms and alluvial roughness[J]. Journal of Hydraulic Engineering, ASCE, 1984, 110(12): 1733-1754.

[4]

Dou G R. Incipient motion of coarse and fine sediment [J]. Journal of Sediment Research, 1999 (6):1–9(in Chinese).

[5]

Cheng N. S.. Analysis of bed load transport in laminar flow[J]. Advance Water Resource, 2004, 27 937-942.

[6]

Cao Z., Pender G., Meng J.. Explicit formula of the Shields diagram for incipient motion of sediment[J]. Journal of Hydraulic Engineering, 2006, 132(10): 1097-1099.

[7]

Kramer H.. Sand mixtures and sand movement in fluvial models[J]. Trans ASCE, 1935, 100 798-838.

[8]

Beheshti A. A., Ataie-Ashtiani B.. Analysis of threshold and incipient conditions for sediment movement[J]. Coastal Engineering, 2008, 55 423-430.

[9]

Neill C. R., Yalin M. S.. Quantitative definition of beginning of bed movement[J]. Journal of Hydraulic Diversion, 1969, 95(1): 585-588.

[10]

Dancey C. L., Diplas P., Papanicolaou A., et al. Probability of individual grain movement and threshold condition[J]. Journal of Hydraulic Engineering, 2002, 128(12): 1069-1075.

[11]

Lyn D A. Observation of initial sediment motion in a turbulent flow generated in a square tank by a vertically oscillating [C]. Proceedings of the First International Conference, V.1. San Antonio,Texas, August 14–18. 1995.

[12]

Liu C. R., Huhe A. D.. Homogenous turbulence structure near the wall and sediment incipience[J]. The Ocean Engineering, 2003, 21(3): 50-55.

[13]

Cao Z X. Turbulent bursting-based sediment pick-up flux from loose bed [J]. Journal of Hydraulic Engineering, 1996(5):18–21(in Chinese).

[14]

Keshavarzy A., Ball J. E.. An application of image processing in the study of sediment motion[J]. Journal of Hydraulic Research, 1999, 37(4): 559-576.

[15]

Sechet P., Guennec B. L.. The role of near wall turbulent structures on sediment transport[J]. Water Research, 1999, 33(17): 3646-3656.

[16]

Marchioli C., Soldati A.. Mechanisms for particle transfer and segregation in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2002, 468 283-315.

[17]

Liang D. F., Cheng L., Li F. J.. Numerical modeling of flow and scour below a pipeline in currents(Part II): Scour simulation[J]. Coastal Engineering, 2005, 52 43-62.

[18]

Wang X. F., Zhuang Z. Q., Wang D. S.. Image Processing Designed by C Programming Language[M]. 1994, Hefei: China Science and Technology University Press 98-103.

[19]

Soria J., Cater J., Kostas J.. High resolution multigrid cross-correlation digital PIV measurements of a turbulent starting jet using half frame image shift film recording[J]. Optics and Laser Technology, 1999, 31 3-12.

[20]

Le H., Moin P., Kim J.. Direct numerical simulation of turbulent flow over a backward-facing step[J]. Journal of Fluid Mechanics, 1997, 330 349-374.

[21]

Armaly B. F., Durst F., Pereira J. C. F., et al. Experimental and theoretical investigation of backward-facing step[J]. Journal of Fluid Mechanics, 1983, 127 473-496.

[22]

Jovic S, Driver D M. Backward-facing step measurement at low Reynolds number, Re h =5 000 [R]. NASA Tech Mem. 108807. 1994.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/