Security constrained distributed optimal power flow of interconnected power systems

Alhabib Binkou , Yixin Yu

Transactions of Tianjin University ›› 2008, Vol. 14 ›› Issue (3) : 208 -216.

PDF
Transactions of Tianjin University ›› 2008, Vol. 14 ›› Issue (3) : 208 -216. DOI: 10.1007/s12209-008-0038-2
Article

Security constrained distributed optimal power flow of interconnected power systems

Author information +
History +
PDF

Abstract

The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PCIPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.

Keywords

distributed optimal power flow / interior point method / predictor-corrector method / security region

Cite this article

Download citation ▾
Alhabib Binkou, Yixin Yu. Security constrained distributed optimal power flow of interconnected power systems. Transactions of Tianjin University, 2008, 14(3): 208-216 DOI:10.1007/s12209-008-0038-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biskas P. N., Bakirtzis A. G.. Decentralised congestion management of interconnected power systems[J]. IEE Proceedings, Generation, Transmission and Distribution, 2002, 149(4): 432-438.

[2]

Christie R. D., Wollenberg B. F., Wangensteen I.. Transmission management in the deregulated environment[J]. Proc of the IEEE, 2000, 88(2): 170-195.

[3]

Aguado J A, Quintana V H, Conejo A J. Optimal power flows of interconnected power systems[C]. In: IEEE Power Engineering Society Summer Meeting. Edmonton, Canada, 1999. 814–819.

[4]

Tylavsky D. J., Bose A., Alvarado F., et al. A task force of the computer and analytical methods subcommittee of the power systems engineering committee: Parallel processing in power systems computation[J]. IEEE Transactions on Power Systems, 1992, 7(2): 629-637.

[5]

Huang G., Ongsakul W.. Speed up and synchronization overhead analysis of Gauss-Seidel type algorithms on a sequent balance machine[J]. IEE Proceedings, Generation, Transmission and Distribution, 1994, 141(5): 437-444.

[6]

Lin S., van Ness J. E.. Parallel solution of sparse algebraic equations[J]. IEEE Transactions on Power Systems, 1994, 9(2): 743-749.

[7]

Kim B. H., Baldick R.. Coarse-grained distributed optimal power flow[J]. IEEE Transactions on Power Systems, 1997, 12(2): 932-939.

[8]

Baldick R., Kim B. H., Chase C., et al. A fast distributed implementation of optimal power flow[J]. IEEE Transactions on Power Systems, 1999, 14(3): 858-864.

[9]

Kim B. H., Baldick R.. A comparison of distributed optimal power flow algorithms[J]. IEEE Transactions on Power Systems, 2000, 15(2): 599-604.

[10]

Conejo A. J., Aguado J. A.. Multi-area coordination decentralized DC optimal power flow[J]. IEEE Transactions on Power Systems, 1998, 13(4): 1272-1278.

[11]

Aguado J A, Pérez-Molina C, Quintana V H. Decentralised power system state estimation: A decompositioncoordination approach [C]. In: IEEE Power Tech Proceedings Conference. Porto, Portugal, 2001. 257–262.

[12]

Aguado J. A., Quintana V. H., Madrigal M., et al. Coordinated spot market for congestion management of interregional electricity markets[J]. IEEE Transactions on Power Systems, 2004, 19(1): 180-187.

[13]

Bakirtzis A. G., Biskas P. N.. A decentralized solution to the DC-OPF of interconnected power systems[J]. IEEE Transactions on Power Systems, 2003, 18(3): 1007-1013.

[14]

Biskas P. N., Bakirtzis A. G., Macheras N. I., et al. A decentralized implementation of DC optimal power flow on a network of computers[J]. IEEE Transactions on Power Systems, 2005, 20(1): 25-33.

[15]

Torres G. L., Quintana V. H.. An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates[J]. IEEE Transactions on Power Systems, 1998, 13(4): 1211-1218.

[16]

Torres G. L., Quintana V. H.. On a nonlinear multiple-centrality-corrections interior-point method for optimal power flow[J]. IEEE Transactions on Power Systems, 2001, 16(2): 222-228.

[17]

Binkou A., Yu Y.. Security region based real and reactive optimization of power systems[J]. Proceedings of the CSEE, 2006, 26(12): 1-10.

[18]

Wai Y. N.. Generalized generation distribution factors for power system security evaluations[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(3): 1001-1005.

[19]

Grigg C., Wong P., Albrecht P., et al. The IEEE reliability test system-1996[J]. IEEE Transactions on Power Systems, 1999, 14(3): 1010-1020.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/