2025-04-29 2023, Volume 31 Issue 3

  • Select all
  • P. A. Montenegro , R. Calçada

    An enhancement in the wheel–rail contact model used in a nonlinear vehicle–structure interaction (VSI) methodology for railway applications is presented, in which the detection of the contact points between wheel and rail in the concave region of the thread–flange transition is implemented in a simplified way. After presenting the enhanced formulation, the model is validated with two numerical applications (namely, the Manchester Benchmarks and a hunting stability problem of a suspended wheelset), and one experimental test performed in a test rig from the Railway Technical Research Institute (RTRI) in Japan. Given its finite element (FE) nature, and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility, the proposed VSI model can be easily used in the study of train–bridge systems with any degree of complexity. The validation presented in this work proves the accuracy of the proposed model, making it a suitable tool for dealing with different railway dynamic applications, such as the study of bridge dynamics, train running safety under different scenarios (namely, earthquakes and crosswinds, among others), and passenger riding comfort.

  • Shuyue Zhang , Qiyue Liu , Maksym Spiryagin , Qing Wu , Haohao Ding , Zefeng Wen , Wenjian Wang

    The prediction of wheel/rail rolling contact fatigue (RCF) crack initiation during railway operations is an important task. Since RCF crack evolution is influenced by many factors, its prediction process is complex. This paper reviews the existing approaches to predict RCF crack initiation. The crack initiation region is predicted by the shakedown map. By combining the shakedown map with various initiation criteria and the critical plane method, the crack initiation life is calculated. The classification, methodologies, theories and applications of these approaches are included in this paper. The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction. This review highlights that wheel/rail dynamic characteristic, complex working conditions, surface defects and wear all affect the RCF crack initiation. The optimal selection of criteria is essential in the crack initiation prediction. Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review, a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.

  • Om Prakash Yadav , Nalinaksh S. Vyas

    Inadequate management of large in-train forces transferred through coupler systems of a railway train leads to running and structural failures of vehicles. Understanding these phenomena and their mitigation requires accurate estimation of relative motions and in-train forces between vehicle bodies. Previous numerical studies have ignored inertia of coupling elements and the impacts between couplers. Thus, existing models underestimate the additional dynamic variations in in-train forces. Detailed multi-body dynamic models of two AAR (Association of American Railroads) coupler systems used in passenger and freight trains are developed, incorporating coupler inertia and various slacks. Due to the modeling and simulation complexities involved in a full train model, with such details of coupler system, actual longitudinal train dynamics is not studied. A system comprising only two coupling units, inter-connecting two consecutive vehicles, is modeled. Considered system has been fixed at one end and an excitation force is applied at the other end, to mimic a relative force transmission through combined coupler system. Simulation results obtained from this representative system show that, noticeable influence in in-train forces are expected due to the combined effect of inertia of couplers and intermittent impacts between couplers in the slack regime. Maximum amplitude of longitudinal reaction force, transferred from draft gear housing to vehicle body, is expected to be significantly higher than that predicted using existing models of coupler system. It is also observed that the couplers and knuckles are subjected to significant longitudinal and lateral contact forces, due to the intermittent impacts between couplers. Thus, accurate estimation of draft gear reaction force and impact forces between couplers are essential to design vehicle and coupler components, respectively.

  • Yixiao Li , Maoru Chi , Zhaotuan Guo , Shulin Liang

    Low-frequency carbody swaying phenomenon often occurs to railway vehicles due to hunting instability, which seriously deteriorates the ride comfort of passengers. This paper investigates low-frequency carbody swaying through experimental analysis and numerical simulation. In the tests, the carbody acceleration, the wheel–rail profiles, and the dynamic characteristics of dampers were measured to understand the characteristics of the abnormal carbody vibration and to find out its primary contributor. Linear and nonlinear numerical simulations on the mechanism and optimization measures were carried out to solve this carbody swaying issue. The results showed that the carbody swaying is the manifest of carbody hunting instability. The low equivalent conicity and the decrease of dynamic damping of the yaw damper are probably the cause of this phenomenon. The optimization measures to increase the equivalent conicity and dynamic damping of the yaw damper were put forward and verified by on-track tests. The results of this study could enrich the knowledge of carbody hunting and provide a reference for solving abnormal carbody vibrations.

  • Zhiwei Wang , Linchuan Yang , Jiliang Mo , Song Zhu , Wenwei Jin

    Brake systems are essential for the speed regulation or braking of a high-speed train. The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety. To reveal the vehicle dynamic behaviour in braking process, a comprehensive trailer car dynamics model (TCDM) considering brake systems is established in this paper. The dynamic interactions between the brake system and the other connected components are achieved using the brake disc–pad frictions, brake suspension systems, and wheel–rail interactions. The force and motion transmission from the brake system to the wheel–rail interface is performed by the proposed TCDM excited by track irregularity. In addition, the validity of TCDM is verified by experimental test results. On this basis, the dynamic behaviour of the coupled system is simulated and discussed. The findings indicate that the braking force significantly affects vehicle dynamic behaviour including the wheel–rail forces, suspension forces, wheelset torsional vibration, etc. The dynamic interactions within the brake system are also significantly affected by the vehicle vibration due to track irregularity. Besides, the developed TCDM can be further employed to the dynamic assessment of such a coupled mechanical system under different braking conditions.

  • Guosong Lin , Bin Hong , Zefang Wu , Xuguo Fu

    When fault occurs on cross-coupling autotransformer (AT) power supply traction network, the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity, which leads to an extended power failure. Based on equivalent circuit and Kirchhoff’s current law, the feeder current characteristic in the substation, AT station and sectioning post when T–R fault, F–R fault, and T–F fault occur are analyzed and their expressions are obtained. When the traction power supply system is equipped with wide-area protection measurement and control system, the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed. When a short-circuit fault occurs in the power supply arm, all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations. After data synchronous processing and logic judgment, the fault line of the power supply arm can be identified and isolated quickly. The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions, transition resistances, and fault types. The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit (EMU), and reliability, selectivity, and rapidity of relay protection are all improved.

  • Minqi Dong , Wubin Wang , Chengjin Wang , Zhichao Huang , Zhaofeng Ding , Zhixing Deng , Qian Su

    To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium–low-speed (MLS) maglevs, cyclic vibration tests were performed under natural and rainfall conditions, and the dynamic response of the subgrade structure was monitored. The dynamic response attenuation characteristics along the depth direction of the subgrade were compared, and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed. The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade. Results show that water has a certain effect on the dynamic characteristics of the subgrade, and the dynamic stress and acceleration increase with the water content. With the dowel steel structure set between the rail-bearing beams, stress concentration at the end of the loaded beam can be prevented, and the diffusion distance of the dynamic stress along the longitudinal direction increases. The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress. The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions, respectively, and both values are less than the 30 mm limit, indicating that the MLS maglev subgrade structure has good long-term dynamic stability.