Apr 2023, Volume 14 Issue 4
    

  • Select all
  • RECOLLECTION
    Xudong Liu, Yuanmeng Li, Naishi Li
  • REVIEW
    Junichi Yuasa-Kawada, Mariko Kinoshita-Kawada, Yoshio Tsuboi, Jane Y. Wu

    Neurons migrate from their birthplaces to the destinations, and extending axons navigate to their synaptic targets by sensing various extracellular cues in spatiotemporally controlled manners. These evolutionally conserved guidance cues and their receptors regulate multiple aspects of neural development to establish the highly complex nervous system by mediating both short- and long-range cell–cell communications. Neuronal guidance genes (encoding cues, receptors, or downstream signal transducers) are critical not only for development of the nervous system but also for synaptic maintenance, remodeling, and function in the adult brain. One emerging theme is the combinatorial and complementary functions of relatively limited classes of neuronal guidance genes in multiple processes, including neuronal migration, axonal guidance, synaptogenesis, and circuit formation. Importantly, neuronal guidance genes also regulate cell migration and cell–cell communications outside the nervous system. We are just beginning to understand how cells integrate multiple guidance and adhesion signaling inputs to determine overall cellular/subcellular behavior and how aberrant guidance signaling in various cell types contributes to diverse human diseases, ranging from developmental, neuropsychiatric, and neurodegenerative disorders to cancer metastasis. We review classic studies and recent advances in understanding signaling mechanisms of the guidance genes as well as their roles in human diseases. Furthermore, we discuss the remaining challenges and therapeutic potentials of modulating neuronal guidance pathways in neural repair.

  • RESEARCH ARTICLE
    Kuisheng Liu, Xiaocui Xu, Dandan Bai, Yanhe Li, Yalin Zhang, Yanping Jia, Mingyue Guo, Xiaoxiao Han, Yingdong Liu, Yifan Sheng, Xiaochen Kou, Yanhong Zhao, Jiqing Yin, Sheng Liu, Jiayu Chen, Hong Wang, Yixuan Wang, Wenqiang Liu, Shaorong Gao

    Self-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that the “trophectoderm (TE)-like structure” of EPS-blastoids was primarily composed of primitive endoderm (PrE)-related cells instead of TE-related cells. We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure. Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation. Furthermore, we demonstrated that blastocyst-like structures reconstituted by combining the EPS-derived bilineage embryo-like structure (BLES) with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses. In summary, our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.

  • RESEARCH ARTICLE
    Yiyuan Zhang, Yandong Zheng, Si Wang, Yanling Fan, Yanxia Ye, Yaobin Jing, Zunpeng Liu, Shanshan Yang, Muzhao Xiong, Kuan Yang, Jinghao Hu, Shanshan Che, Qun Chu, Moshi Song, Guang-Hui Liu, Weiqi Zhang, Shuai Ma, Jing Qu

    Aging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age. We found that aged cardiomyocytes underwent a dramatic loss in cell numbers and profound fluctuations in transcriptional profiles. Via transcription regulatory network analysis, we identified FOXP1, a core transcription factor in organ development, as a key downregulated factor in aged cardiomyocytes, concomitant with the dysregulation of FOXP1 target genes associated with heart function and cardiac diseases. Consistently, the deficiency of FOXP1 led to hypertrophic and senescent phenotypes in human embryonic stem cell-derived cardiomyocytes. Altogether, our findings depict the cellular and molecular landscape of ventricular aging at the single-cell resolution, and identify drivers for primate cardiac aging and potential targets for intervention against cardiac aging and associated diseases.

  • LETTER
    Jing Zuo, Yanjun Liu, Wenjing Lv, Yudong Wang, Zhisong Fan, Long Wang, Li Feng, Xue Zhang, Jing Han, Zhiyu Ni
  • Letter
    Yan Li, Shengyao Zhi, Tong Wu, Hong-Xuan Chen, Rui Kang, Dong-Zhao Ma, Zhou Songyang, Chuan He, Puping Liang, Guan-Zheng Luo
  • LETTER
    Ying Feng, Siyuan Liu, Qiqin Mo, Pengpeng Liu, Xiao Xiao, Hanhui Ma
  • LETTER
    Xiaolin Liu, Yue Ma, Ying Yu, Wenhui Zhang, Jingjing Shi, Xuan Zhang, Min Dai, Yuhan Wang, Hao Zhang, Jiahe Zhang, Jianghua Shen, Faming Zhang, Moshi Song, Jun Wang