Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs

Ying Feng , Siyuan Liu , Qiqin Mo , Pengpeng Liu , Xiao Xiao , Hanhui Ma

Protein Cell ›› 2023, Vol. 14 ›› Issue (4) : 304 -308.

PDF (1136KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (4) : 304 -308. DOI: 10.1093/procel/pwac014
LETTER
LETTER

Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs

Author information +
History +
PDF (1136KB)

Cite this article

Download citation ▾
Ying Feng, Siyuan Liu, Qiqin Mo, Pengpeng Liu, Xiao Xiao, Hanhui Ma. Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs. Protein Cell, 2023, 14(4): 304-308 DOI:10.1093/procel/pwac014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anzalone AV, Gao XD, Podracky CJ et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2022;40:731–740.

[2]

Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149–157.

[3]

Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014;30:1473–1475.

[4]

Chen PJ, Hussmann JA, Yan J et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021;184:5635–5652.e29.

[5]

Choi J, Chen W, Suiter CC et al. Precise genomic deletions using paired prime editing. Nat Biotechnol 2022;40:218–226.

[6]

Convery MA, Rowsell S, Stonehouse NJ et al. Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution. Nat Struct Biol 1998;5:133–139.

[7]

Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018;36:765–771.

[8]

Landrum MJ, Lee JM, Benson M et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44:D862–D868.

[9]

Lin Q, Zong Y, Xue C et al. Prime genome editing in rice and wheat. Nat Biotechnol 2020;38:582–585.

[10]

Litke JL, Jaffrey SR. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat Biotechnol 2019;37:667–675.

[11]

Liu Y, Yang G, Huang S et al. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res 2021;31:1134–1136.

[12]

Ma H, Tu LC, Naseri A et al. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 2016;214:529–537.

[13]

Ma H, Tu LC, Naseri A et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 2018;15:928–931.

[14]

Nelson JW, Randolph PB, Shen SP et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022;40:402–410.

[15]

Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science 2018;359:6380.

[16]

Urbanek MO, Galka-Marciniak P, Olejniczak M et al. RNA imaging in living cells—methods and applications. RNA Biol 2014;11:1083–1095.

RIGHTS & PERMISSIONS

©The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1136KB)

Supplementary files

PAC-0305-22005-MHH_suppl_1

489

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/