Systematic identification of CRISPR off-target effects by CROss-seq

Yan Li , Shengyao Zhi , Tong Wu , Hong-Xuan Chen , Rui Kang , Dong-Zhao Ma , Zhou Songyang , Chuan He , Puping Liang , Guan-Zheng Luo

Protein Cell ›› 2023, Vol. 14 ›› Issue (4) : 299 -303.

PDF (2709KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (4) : 299 -303. DOI: 10.1093/procel/pwac018
Letter
Letter

Systematic identification of CRISPR off-target effects by CROss-seq

Author information +
History +
PDF (2709KB)

Cite this article

Download citation ▾
Yan Li, Shengyao Zhi, Tong Wu, Hong-Xuan Chen, Rui Kang, Dong-Zhao Ma, Zhou Songyang, Chuan He, Puping Liang, Guan-Zheng Luo. Systematic identification of CRISPR off-target effects by CROss-seq. Protein Cell, 2023, 14(4): 299-303 DOI:10.1093/procel/pwac018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824–844.

[2]

Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149–157.

[3]

Gaudelli NM, Komor AC, Rees HA et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 2017;551:464–471.

[4]

Jin S, Lin Q, Luo Y et al. Genome-wide specificity of prime editors in plants. Nat Biotechnol 2021;39:1292–1299.

[5]

Kim D, Bae S, Park J et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015;12:237–243, 1 p following 243.

[6]

Kim D, Kim J. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res 2018;28:1894–1900.

[7]

Kim D, Lim K, Kim S et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 2017;35:475–480.

[8]

Kim DY, Moon SB, Ko J et al. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res 2020;48:10576–10589.

[9]

Koblan LW, Doman JL, Wilson C et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 2018;36:843–846.

[10]

Komor AC, Kim YB, Packer MS et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533:420–424.

[11]

Liang P, Xie X, Zhi S et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 2019;10:1–9.

[12]

Richter MF, Zhao KT, Eton E et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883–891.

[13]

Weng X, Gong J, Chen Y et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat Chem Biol 2020;16:489–492.

[14]

Wu T, Lyu R, You Q et al. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat Methods 2020;17:515–523.

[15]

Zhang H, Li T, Sun Y et al. Perfecting targeting in CRISPR. Annu Rev Genet 2021;55:453–477.

RIGHTS & PERMISSIONS

©The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (2709KB)

Supplementary files

PAC-0300-21527-LGZ_suppl_1

291

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/