Systematic identification of CRISPR off-target effects by CROss-seq

Yan Li, Shengyao Zhi, Tong Wu, Hong-Xuan Chen, Rui Kang, Dong-Zhao Ma, Zhou Songyang, Chuan He, Puping Liang, Guan-Zheng Luo

PDF(2709 KB)
PDF(2709 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (4) : 299-303. DOI: 10.1093/procel/pwac018
Letter
Letter

Systematic identification of CRISPR off-target effects by CROss-seq

Author information +
History +

Cite this article

Download citation ▾
Yan Li, Shengyao Zhi, Tong Wu, Hong-Xuan Chen, Rui Kang, Dong-Zhao Ma, Zhou Songyang, Chuan He, Puping Liang, Guan-Zheng Luo. Systematic identification of CRISPR off-target effects by CROss-seq. Protein Cell, 2023, 14(4): 299‒303 https://doi.org/10.1093/procel/pwac018

References

[1]
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824–844.
CrossRef Google scholar
[2]
Anzalone AV, Randolph PB, Davis JR et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149–157.
CrossRef Google scholar
[3]
Gaudelli NM, Komor AC, Rees HA et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 2017;551:464–471.
CrossRef Google scholar
[4]
Jin S, Lin Q, Luo Y et al. Genome-wide specificity of prime editors in plants. Nat Biotechnol 2021;39:1292–1299.
CrossRef Google scholar
[5]
Kim D, Bae S, Park J et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015;12:237–243, 1 p following 243.
CrossRef Google scholar
[6]
Kim D, Kim J. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res 2018;28:1894–1900.
CrossRef Google scholar
[7]
Kim D, Lim K, Kim S et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 2017;35:475–480.
CrossRef Google scholar
[8]
Kim DY, Moon SB, Ko J et al. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res 2020;48:10576–10589.
CrossRef Google scholar
[9]
Koblan LW, Doman JL, Wilson C et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 2018;36:843–846.
CrossRef Google scholar
[10]
Komor AC, Kim YB, Packer MS et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533:420–424.
CrossRef Google scholar
[11]
Liang P, Xie X, Zhi S et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 2019;10:1–9.
CrossRef Google scholar
[12]
Richter MF, Zhao KT, Eton E et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883–891.
CrossRef Google scholar
[13]
Weng X, Gong J, Chen Y et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat Chem Biol 2020;16:489–492.
CrossRef Google scholar
[14]
Wu T, Lyu R, You Q et al. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat Methods 2020;17:515–523.
CrossRef Google scholar
[15]
Zhang H, Li T, Sun Y et al. Perfecting targeting in CRISPR. Annu Rev Genet 2021;55:453–477.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 ©The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(2709 KB)

Accesses

Citations

Detail

Sections
Recommended

/