Nov 2015, Volume 6 Issue 11
    

Cover illustration

  • Ebolavirus can cause hemorrhagic fever in humans with a mortality rate of 50%–90%. Currently, no approved vaccines and antiviral therapies are available. Human TIM1 is considered as an attachment factor for EBOV, enhancing viral infection through interaction with PS located on the viral envelope. However, reasons underlying the preferable usage of hTIM-1, but not other PS binding receptors by fi lovirus, remain unknown. We fi rstly demonstrated a direct interac [Detail] ...


  • Select all
  • VANTAGE POINTS
    Xuejun C. Zhang,Min Liu,Yan Zhao
  • REVIEW
    Betty C. Wang,Helen Liu,Ankoor Talwar,Jinlong Jian

    Progranulin (PGRN) is a growth factor implicated in various pathophysiological processes, including wound healing, inflammation, tumorigenesis, and neurodegeneration. It was previously reported that PGRN binds to tumor necrosis factor receptors (TNFR) and has therapeutic effects in inflammatory arthritis (Tang et. al, in Science 332:478−484, 2011); however, Chen et al. reported their inability to demonstrate the PGRN-TNFR interactions under their own conditions (Chen et. al, in J Neurosci 33:9202−9213, 2013). A letter-to-editor was then published by the original group in response to the Chen et al. paper that discussed the reasons for the latter’s inability to recapitulate the interactions. In addition, the group published follow-up studies that further reinforced and dissected the interactions of PGRNTNFR. Recently, the dispute about the legitimacy of PGRN-TNFR interactions appears to be finally settled with independent confirmations of these interactions in various conditions by numerous laboratories. This review presents a chronological update on the story of PGRN-TNFR interactions, highlighting the independent confirmations of these interactions in various diseases and conditions.

  • REVIEW
    Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn

    Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including transcription factors. Acetylation of transcription factors affects subcellular distribution, DNA affinity, stability, transcriptional activity, and current investigations are aiming to further expand our understanding of the role of lysine acetylation of transcription factors. In this review, we summarize recent studies that provide new insights into the role of protein lysine-acetylation in the transcriptional regulation of metabolic homeostasis.

  • RESEARCH ARTICLE
    Shuai Yuan,Lei Cao,Hui Ling,Minghao Dang,Yao Sun,Xuyuan Zhang,Yutao Chen,Liguo Zhang,Dan Su,Xiangxi Wang,Zihe Rao

    Ebolavirus can cause hemorrhagic fever in humans with a mortality rate of 50%−90%. Currently, no approved vaccines and antiviral therapies are available. Human TIM1 is considered as an attachment factor for EBOV, enhancing viral infection through interaction with PS located on the viral envelope. However, reasons underlying the preferable usage of hTIM-1, but not other PS binding receptors by filovirus, remain unknown. We firstly demonstrated a direct interaction between hTIM-1 and EBOV GP in vitro and determined the crystal structures of the Ig V domains of hTIM-1 and hTIM-4. The binding region in hTIM-1 to EBOV GP was mapped by chimeras and mutation assays, which were designed based on structural analysis. Pseudovirion infection assays performed using hTIM-1 and its homologs as well as point mutants verified the location of the GP binding site and the importance of EBOV GP-hTIM-1 interaction in EBOV cellular entry.

  • RESEARCH ARTICLE
    Xin Chen,Weiwei Ma,Tingxin Zhang,Longyan Wu,Hai Qi

    How follicular T-helper (Tfh) cells develop is incompletely understood. We find that, upon antigen exposure in vivo, both naïve and antigen-experienced T cells sequentially upregulate CXCR5 and Bcl6 within the first 24 h, relocate to the T-B border, and give rise to phenotypic Bcl6+CXCR5+ Tfh cells before the first cell division. CXCR5 upregulation is more dependent on ICOS costimulation than that of Bcl6, and early Bcl6 induction requires T-cell expression of CXCR5 and, presumably, relocation toward the follicle. This early and rapid upregulation of CXCR5 and Bcl6 depends on IL-6 produced by radiation-resistant cells. These results suggest that a Bcl6hiCXCR5hi phenotype does not automatically define a Tfh lineage but might reflect a state of antigen exposure and non-commitment to terminal effector fates and that niches in the T-B border and/or the follicle are important for optimal Bcl6 induction and maintenance.

  • RESEARCH ARTICLE
    Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez

    The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery.

  • LETTER
    Zhengbiao Ying,Jing Zheng,Zhaoyang Cai,Li Liu,Yu Dai,Juan Yao,Hui Wang,Yinglong Gao,Binjiao Zheng,Xiaowen Tang,Yi Zhu,Min-Xin Guan,Ye Chen
  • LETTER
    Jingdong Cheng,Ze Li,Rui Gong,Jian Fang,Yi Yang,Chang Sun,Huirong Yang,Yanhui Xu
  • LETTER
    Sha-Sha Zhao,Yi-Liao Wang,Ming-Zhu Sun,Lu Lu,Ya-Nan Wang,Delaney Pfister,Jessica Lee,Xin Zhao,Xi-Zeng Feng,Lei Li