How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?

Xuejun C. Zhang, Min Liu, Yan Zhao

PDF(387 KB)
PDF(387 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (11) : 784-791. DOI: 10.1007/s13238-015-0217-6
VANTAGE POINTS
VANTAGE POINTS

How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?

Author information +
History +

Cite this article

Download citation ▾
Xuejun C. Zhang, Min Liu, Yan Zhao. How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?. Protein Cell, 2015, 6(11): 784‒791 https://doi.org/10.1007/s13238-015-0217-6

References

[1]
Abrahams JP (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491): 621−628
CrossRef Google scholar
[2]
Boyer PD (1988) Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem Sci 13(1): 5−7
CrossRef Google scholar
[3]
Boyer PD (1993) The binding change mechanism for ATP synthase−some probabilities and possibilities. Biochim Biophys Acta 1140(3): 215−250
CrossRef Google scholar
[4]
Dimroth P (2003) Electrical power fuels rotary ATP synthase. Structure 11(12): 1469−1473
CrossRef Google scholar
[5]
Fillingame RH, Steed PR (2014) Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837(7): 1063−1068
CrossRef Google scholar
[6]
Gruber G (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837(6): 940−952
CrossRef Google scholar
[7]
Holliday LS (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275(41): 32331−32337
CrossRef Google scholar
[8]
Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22(11): 420−423
CrossRef Google scholar
[9]
Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380): 214−218
CrossRef Google scholar
[10]
Lightowlers RN (1987) The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta 894(3): 399−406
CrossRef Google scholar
[11]
Liu X (2009) Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 75(1): 1−11
CrossRef Google scholar
[12]
Miller MJ, Oldenburg M, Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A 87(13): 4900−4904
CrossRef Google scholar
[13]
Minagawa Y (2013) Basic properties of rotary dynamics of the molecular motor Enterococcus hirae<?Pub Caret?>V1-ATPase. J Biol Chem 288(45): 32700−32707
CrossRef Google scholar
[14]
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK (2008) The rotary mechanism of the ATP synthase. Arch Biochem Biophys 476(1): 43−50
CrossRef Google scholar
[15]
Nakano T (2006) A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. J Mol Biol 358(1): 132−144
CrossRef Google scholar
[16]
Noji H (1997) Direct observation of the rotation of F1-ATPase. Nature 386(6622): 299−302
CrossRef Google scholar
[17]
Pogoryelov D (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16(10): 1068−1073
CrossRef Google scholar
[18]
Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F(1)F(0) ATP synthases. J Bioenerg Biomembr 46(3): 229−241
CrossRef Google scholar
[19]
Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445): 1700−1705
CrossRef Google scholar
[20]
Symersky J (2012) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19(5): 485−491 S1
[21]
Valiyaveetil FI, Fillingame RH (1997) On the role of Arg-210 and Glu- 219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem 272(51): 32635−32641
CrossRef Google scholar
[22]
von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46(42): 11800−11809
CrossRef Google scholar
[23]
Zhang XC (2014) Proton transfer-mediated GPCR activation. Protein Cell 6(1): 13−17
[24]
Zhang XC (2015a) Energy coupling mechanisms of MFS transporters. Protein Sci 24(10): 1560−1579
CrossRef Google scholar
[25]
Zhang XC, Han L, Zhao Y (2015b) Thermodynamics of ABC transporters. . Protein Cell.
CrossRef Google scholar
[26]
Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521(7551): 241−245
CrossRef Google scholar
[27]
Zhu G (2007) Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J 26(14): 3484−3493
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(387 KB)

Accesses

Citations

Detail

Sections
Recommended

/