How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?
Xuejun C. Zhang, Min Liu, Yan Zhao
How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?
[1] |
Abrahams JP
CrossRef
Google scholar
|
[2] |
Boyer PD (1988) Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem Sci 13(1): 5−7
CrossRef
Google scholar
|
[3] |
Boyer PD (1993) The binding change mechanism for ATP synthase−some probabilities and possibilities. Biochim Biophys Acta 1140(3): 215−250
CrossRef
Google scholar
|
[4] |
Dimroth P
CrossRef
Google scholar
|
[5] |
Fillingame RH, Steed PR (2014) Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837(7): 1063−1068
CrossRef
Google scholar
|
[6] |
Gruber G
CrossRef
Google scholar
|
[7] |
Holliday LS
CrossRef
Google scholar
|
[8] |
Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22(11): 420−423
CrossRef
Google scholar
|
[9] |
Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380): 214−218
CrossRef
Google scholar
|
[10] |
Lightowlers RN
CrossRef
Google scholar
|
[11] |
Liu X
CrossRef
Google scholar
|
[12] |
Miller MJ, Oldenburg M, Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A 87(13): 4900−4904
CrossRef
Google scholar
|
[13] |
Minagawa Y
CrossRef
Google scholar
|
[14] |
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK (2008) The rotary mechanism of the ATP synthase. Arch Biochem Biophys 476(1): 43−50
CrossRef
Google scholar
|
[15] |
Nakano T
CrossRef
Google scholar
|
[16] |
Noji H
CrossRef
Google scholar
|
[17] |
Pogoryelov D
CrossRef
Google scholar
|
[18] |
Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F(1)F(0) ATP synthases. J Bioenerg Biomembr 46(3): 229−241
CrossRef
Google scholar
|
[19] |
Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445): 1700−1705
CrossRef
Google scholar
|
[20] |
Symersky J
|
[21] |
Valiyaveetil FI, Fillingame RH (1997) On the role of Arg-210 and Glu- 219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem 272(51): 32635−32641
CrossRef
Google scholar
|
[22] |
von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46(42): 11800−11809
CrossRef
Google scholar
|
[23] |
Zhang XC
|
[24] |
Zhang XC
CrossRef
Google scholar
|
[25] |
Zhang XC, Han L, Zhao Y (2015b) Thermodynamics of ABC transporters. . Protein Cell.
CrossRef
Google scholar
|
[26] |
Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521(7551): 241−245
CrossRef
Google scholar
|
[27] |
Zhu G
CrossRef
Google scholar
|
/
〈 | 〉 |