New discovery rarely runs smooth: an update on progranulin/TNFR interactions
Betty C. Wang, Helen Liu, Ankoor Talwar, Jinlong Jian
New discovery rarely runs smooth: an update on progranulin/TNFR interactions
Progranulin (PGRN) is a growth factor implicated in various pathophysiological processes, including wound healing, inflammation, tumorigenesis, and neurodegeneration. It was previously reported that PGRN binds to tumor necrosis factor receptors (TNFR) and has therapeutic effects in inflammatory arthritis (Tang et. al, in Science 332:478−484, 2011); however, Chen et al. reported their inability to demonstrate the PGRN-TNFR interactions under their own conditions (Chen et. al, in J Neurosci 33:9202−9213, 2013). A letter-to-editor was then published by the original group in response to the Chen et al. paper that discussed the reasons for the latter’s inability to recapitulate the interactions. In addition, the group published follow-up studies that further reinforced and dissected the interactions of PGRNTNFR. Recently, the dispute about the legitimacy of PGRN-TNFR interactions appears to be finally settled with independent confirmations of these interactions in various conditions by numerous laboratories. This review presents a chronological update on the story of PGRN-TNFR interactions, highlighting the independent confirmations of these interactions in various diseases and conditions.
progranulin / Atsttrin / TNFR / DR3 / TNF-α / TL1A
[1] |
Aggarwal BB (2014) Editorial: balancing tumor necrosis factor receptor I and tumor necrosis factor receptor II jointly for joint inflammation. Arthritis Rheumatol 66: 2657−2660
CrossRef
Google scholar
|
[2] |
Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4: 7
CrossRef
Google scholar
|
[3] |
Almeida S, Zhou L, Gao FB (2011) Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins. PloS One 6: e2 6454
CrossRef
Google scholar
|
[4] |
Alquezar C, Encarnación A, Moreno F, Munain A, Martín-Requero Á (2015) Progranulin deficiency induces over activation of Wnt5a expression via TNFα/NF-κB pathway in peripheral cells from FTLD-linked GRN mutation carriers. J Psychiatry Neurosci (in press)
|
[5] |
Baker CA, Manuelidis L (2003) Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease. Proc Natl Acad Sci USA 100: 675−679
CrossRef
Google scholar
|
[6] |
Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S
CrossRef
Google scholar
|
[7] |
Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. BioEssays 31: 1245−1254
CrossRef
Google scholar
|
[8] |
Bluml S, Binder NB, Niederreiter B, Polzer K, Hayer S, Tauber S, Schett G, Scheinecker C, Kollias G, Selzer E
CrossRef
Google scholar
|
[9] |
Bluml S, Scheinecker C, Smolen JS, Redlich K (2012) Targeting TNF receptors in rheumatoid arthritis. Int Immunol 24: 275−281
CrossRef
Google scholar
|
[10] |
Bodmer JL, Burns K, Schneider P, Hofmann K, Steiner V, Thome M, Bornand T, Hahne M, Schroter M, Becker K
CrossRef
Google scholar
|
[11] |
Cavalli G, Dinarello CA (2015) Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology (Oxford).
CrossRef
Google scholar
|
[12] |
Chen X, Chang J, Deng Q, Xu J, Nguyen TA, Martens LH, Cenik B, Taylor G, Hudson KF, Chung J
CrossRef
Google scholar
|
[13] |
Chinnaiyan AM, O’Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274: 990−992
CrossRef
Google scholar
|
[14] |
Conti P (1991) Interleukin-1 (IL-1) and interleukin-1 receptor antagonist (IL-1ra). Ann Med Int 142: 521−525
|
[15] |
Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9: 271−285
CrossRef
Google scholar
|
[16] |
Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ
CrossRef
Google scholar
|
[17] |
Diaz-Cueto L, Arechavaleta-Velasco F, Diaz-Arizaga A, Dominguez- Lopez P, Robles-Flores M (2012) PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/ granulin-epithelin precursor) protein expression in human ovarian cancer cell lines. Int J Gynecol Cancer 22: 945−950
CrossRef
Google scholar
|
[18] |
Egashira Y, Suzuki Y, Azuma Y, Takagi T, Mishiro K, Sugitani S, Tsuruma K, Shimazawa M, Yoshimura S, Kashimata M
CrossRef
Google scholar
|
[19] |
Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev 9: 482−493
CrossRef
Google scholar
|
[20] |
Frampton G, Invernizzi P, Bernuzzi F, Pae HY, Quinn M, Horvat D, Galindo C, Huang L, McMillin M, Cooper B
CrossRef
Google scholar
|
[21] |
Grunke M, Schulze-Koops H (2006) Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade. Ann Rheum Dis 65: 555−556
CrossRef
Google scholar
|
[22] |
Guo Z, Li Q, Han Y, Liang Y, Xu Z, Ren T (2012) Prevention of LPSinduced acute lung injury in mice by progranulin. Mediat Inflammation 2012: 10
CrossRef
Google scholar
|
[23] |
He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9: 225−229
CrossRef
Google scholar
|
[24] |
Huang K, Chen A, Zhang X, Song Z, Xu H, Cao J, Yin Y (2015) Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 145: 279−287
CrossRef
Google scholar
|
[25] |
Hwang HJ, Jung TW, Hong HC, Choi HY, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH
CrossRef
Google scholar
|
[26] |
Jian J, Konopka J, Liu C (2013a) Insights into the role of progranulin in immunity, infection, and inflammation. J Leukoc Biol 93: 199−208
CrossRef
Google scholar
|
[27] |
Jian J, Zhao S, Tian Q, Gonzalez-Gugel E, Mundra JJ, Uddin SM, Liu B, Richbourgh B, Brunetti R, Liu CJ (2013b) Progranulin directly binds to the CRD2 and CRD3 of TNFR extracellular domains. FEBS Lett 587: 3428−3436
CrossRef
Google scholar
|
[28] |
Kawase R, Ohama T, Matsuyama A, Matsuwaki T, Okada T, Yamashita T, Yuasa-Kawase M, Nakaoka H, Nakatani K, Inagaki M
CrossRef
Google scholar
|
[29] |
Kessenbrock K, Frohlich L, Sixt M, Lammermann T, Pfister H, Bateman A, Belaaouaj A, Ring J, Ollert M, Fassler R
CrossRef
Google scholar
|
[30] |
Kimmerling KA, Furman BD, Mangiapani DS, Moverman MA, Sinclair SM, Huebner JL, Chilkoti A, Kraus VB, Setton LA, Guilak F
|
[31] |
Klein DE, Nappi VM, Reeves GT, Shvartsman SY, Lemmon MA (2004) Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature 430: 1040−1044
CrossRef
Google scholar
|
[32] |
Klein DE, Stayrook SE, Shi F, Narayan K, Lemmon MA (2008) Structural basis for EGFR ligand sequestration by Argos. Nature 453: 1271−1275
CrossRef
Google scholar
|
[33] |
Li M, Liu Y, Xia F, Wu Z, Deng L, Jiang R, Guo FJ (2014) Progranulin is required for proper ER stress response and inhibits ER stressmediated apoptosis through TNFR2. Cell Signal 26: 1539−1548
CrossRef
Google scholar
|
[34] |
Li H, Zhou B, Liu J, Li F, Li Y, Kang X, Sun H, Wu S (2015) Administration of progranulin (PGRN) triggers ER stress and impairs insulin sensitivity via PERK-eIF2alpha-dependent manner. Cell Cycle 14: 1893−1907
CrossRef
Google scholar
|
[35] |
Liu CJ (2011) Progranulin: a promising therapeutic target for rheumatoid arthritis. FEBS Lett 585: 3675−3680
CrossRef
Google scholar
|
[36] |
Liu CJ, Bosch X (2012) Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther 133: 124−132
CrossRef
Google scholar
|
[37] |
Liu C, Li XX, Gao W, Liu W, Liu DS (2014) Progranulin-derived Atsttrin directly binds to TNFRSF25 (DR3) and inhibits TNF-like ligand 1A (TL1A) activity. PloS One 9: e92743
CrossRef
Google scholar
|
[38] |
Liu J, Li H, Zhou B, Xu L, Kang X, Yang W, Wu S, Sun H (2015) PGRN induces impaired insulin sensitivity and defective autophagy in hepatic insulin resistance. Mol Endocrinol 29: 528−541
CrossRef
Google scholar
|
[39] |
Lopez de Munain A, Alzualde A, Gorostidi A, Otaegui D, Ruiz-Martinez J, Indakoetxea B, Ferrer I, Perez-Tur J, Saenz A, Bergareche A
CrossRef
Google scholar
|
[40] |
Ma CH, Lv Q, Yu YX, Zhang Y, Kong D, Niu KR, Yi CQ (2015) Protective effects of tumor necrosis factor-alpha blockade by adalimumab on articular cartilage and subchondral bone in a rat model of osteoarthritis. Brazilian journal of medical and biological research= Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al], 0
|
[41] |
Maksymowych WP, Russell AS, Chiu P, Yan A, Jones N, Clare T, Lambert RG (2012) Targeting tumour necrosis factor alleviates signs and symptoms of inflammatory osteoarthritis of the knee. Arthritis Res Ther 14: R206
CrossRef
Google scholar
|
[42] |
Malaspina A, Kaushik N, de Belleroche J (2001) Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77: 132−145
CrossRef
Google scholar
|
[43] |
Maynard JA, Lindquist NC, Sutherland JN, Lesuffleur A, Warrington AE, Rodriguez M, Oh SH (2009) Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol J 4: 1542−1558
CrossRef
Google scholar
|
[44] |
McCann FE, Perocheau DP, Ruspi G, Blazek K, Davies ML, Feldmann M, Dean JL, Stoop AA, Williams RO (2014) Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis. Arthritis Rheumatol 66: 2728−2738
CrossRef
Google scholar
|
[45] |
Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8: 50−57
CrossRef
Google scholar
|
[46] |
Olson SA, Furman BD, Kraus VB, Huebner JL, Guilak F (2015) Therapeutic opportunities to prevent post-traumatic arthritis: Lessons from the natural history of arthritis after articular fracture. J Orthop Res: Off Publ Orthop Res Soc 33: 1266−1277
CrossRef
Google scholar
|
[47] |
Palfree RG, Bennett HP, Bateman A (2015) The evolution of the secreted regulatory protein progranulin. PloS One 10: e0133749
CrossRef
Google scholar
|
[48] |
Reis CR, van Assen AH, Quax WJ, Cool RH (2011) Unraveling the binding mechanism of trivalent tumor necrosis factor ligands and their receptors. Mol Cell Proteom: MCP 10(M110): 002808
CrossRef
Google scholar
|
[49] |
Scott LJ (2014) Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs 74: 1379−1410
CrossRef
Google scholar
|
[50] |
Serrero G (2003) Autocrine growth factor revisited: PC-cell-derived growth factor (progranulin), a critical player in breast cancer tumorigenesis. Biochem Biophys Res Commun 308: 409−413
CrossRef
Google scholar
|
[51] |
Sfikakis PP, Tsokos GC (2011) Towards the next generation of anti-TNF drugs. Clin Immunol 141: 231−235
CrossRef
Google scholar
|
[52] |
Tadagavadi RK, Reeves WB (2015) NODding off in acute kidney injury with progranulin? Kidney Int 87: 873−875
CrossRef
Google scholar
|
[53] |
Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L
CrossRef
Google scholar
|
[54] |
Thurner L, Preuss KD, Fadle N, Regitz E, Klemm P, Zaks M, Kemele M, Hasenfus A, Csernok E, Gross WL
CrossRef
Google scholar
|
[55] |
Thurner L, Zaks M, Preuss KD, Fadle N, Regitz E, Ong MF, Pfreundschuh M, Assmann G (2013b) Progranulin antibodies entertain a proinflammatory environment in a subgroup of patients with psoriatic arthritis. Arthritis Res Ther 15: R211
CrossRef
Google scholar
|
[56] |
Thurner L, Stoger E, Fadle N, Klemm P, Regitz E, Kemele M, Bette B, Held G, Dauer M, Lammert F
CrossRef
Google scholar
|
[57] |
Thurner L, Fadle N, Regitz E, Kemele M, Klemm P, Zaks M, Stoger E, Bette B, Carbon G, Zimmer V
CrossRef
Google scholar
|
[58] |
Tian QY, Zhao YP, Liu CJ (2012) Modified yeast-two-hybrid system to identify proteins interacting with the growth factor progranulin. J Vis Exp.
CrossRef
Google scholar
|
[59] |
Tian Q, Zhao S, Liu C (2014a) A solid-phase assay for studying direct binding of progranulin to TNFR and progranulin antagonism of TNF/TNFR interactions. Methods Mol Biol 1155: 163−172
CrossRef
Google scholar
|
[60] |
Tian Q, Zhao Y, Mundra JJ, Gonzalez-Gugel E, Jian J, Uddin SM, Liu C (2014b) Three TNFR-binding domains of PGRN act independently in inhibition of TNF-alpha binding and activity. Front Biosci (Landmark Ed) 19: 1176−1185
CrossRef
Google scholar
|
[61] |
Urech DM, Feige U, Ewert S, Schlosser V, Ottiger M, Polzer K, Schett G, Lichtlen P (2010) Anti-inflammatory and cartilageprotecting effects of an intra-articularly injected anti-TNF{alpha} single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann Rheum Dis 69: 443−449
CrossRef
Google scholar
|
[62] |
Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, Carmeliet P, Van Den Bosch L, Robberecht W (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181: 37−41
CrossRef
Google scholar
|
[63] |
van der Merwe PA, Brown MH, Davis SJ, Barclay AN (1993) Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48. EMBO J 12: 4945−4954
|
[64] |
Verbruggen G, Wittoek R, Vander Cruyssen B, Elewaut D (2012) Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification. Ann Rheum Dis 71: 891−898
CrossRef
Google scholar
|
[65] |
Vercellino M, Grifoni S, Romagnolo A, Masera S, Mattioda A, Trebini C, Chiavazza C, Caligiana L, Capello E, Mancardi GL
CrossRef
Google scholar
|
[66] |
Vezina A, Vaillancourt-Jean E, Albarao S, Annabi B (2014) Mesenchymal stromal cell ciliogenesis is abrogated in response to tumor necrosis factor-alpha and requires NF-kappaB signaling. Cancer Lett 345: 100−105
CrossRef
Google scholar
|
[67] |
Wang C, Luo X, Li P, Chen X, Zhou H, Zhang T (2015a) An improved method of GST-pull down based on fluorescence detection and its application to the analysis of the interaction between atsttrin and TNFR2. J Tianjin Univ Sci Technol 30: 34−40
|
[68] |
Wang Q, Xia Q, Wu Y, Zhang X, Wen F, Chen X, Zhang S, Heng BC, He Y, Ouyang HW(2015b) 3D-printed atsttrin-incorporated alginate/hydroxyapatite scaffold promotes bone defect regeneration with tnf/tnfr signaling involvement. Adv Healthc Mater 4: 1701−1708
CrossRef
Google scholar
|
[69] |
Wei F, Zhang Y, Jian J, Mundra JJ, Tian Q, Lin J, Lafaille JJ, Tang W, Zhao W, Yu X
CrossRef
Google scholar
|
[70] |
Wei F, Zhang Y, Zhao W, Yu X, Liu CJ (2014b) Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions. PloS One 9: e112110
CrossRef
Google scholar
|
[71] |
Wu H, Siegel RM (2011) Medicine. Progranulin resolves inflammation. Science 332: 427−428
CrossRef
Google scholar
|
[72] |
Xia Q, Zhu S, Wu Y, Wang J, Cai Y, Chen P, Li J, Heng BC, Ouyang HW, Lu P (2015) Intra-articular transplantation of atsttrin-transduced mesenchymal stem cells ameliorate osteoarthritis development. Stem Cells Transl Med 4: 523−531
CrossRef
Google scholar
|
[73] |
Yamamoto Y, Takemura M, Serrero G, Hayashi J, Yue B, Tsuboi A, Kubo H, Mitsuhashi T, Mannami K, Sato M
CrossRef
Google scholar
|
[74] |
Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y, Iadecola C, Beal MF
CrossRef
Google scholar
|
[75] |
Zhang Q, Lv H, Chen A, Liu F, Wu X (2012) Efficacy of infliximab in a rabbit model of osteoarthritis. Connect Tissue Res 53: 355−358
CrossRef
Google scholar
|
[76] |
Zhao YP, Tian QY, Frenkel S, Liu CJ (2013a) The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials 34: 6412−6421
CrossRef
Google scholar
|
[77] |
Zhao YP, Tian QY, Liu CJ (2013b) Progranulin deficiency exaggerates, whereas progranulin-derived Atsttrin attenuates, severity of dermatitis in mice. FEBS Lett 587: 1805−1810
CrossRef
Google scholar
|
[78] |
Zhao YP, Liu B, Tian QY, Wei JL, Richbourgh B, Liu CJ (2014) Progranulin protects against osteoarthritis through interacting with TNF-α and β-Catenin signalling. Ann Rheum Dis.
CrossRef
Google scholar
|
[79] |
Zheng Y, Brady OA, Meng PS, Mao Y, Hu F (2011) C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking. PloS One 6: e21023
CrossRef
Google scholar
|
[80] |
Zhou M, Tang W, Fu Y, Xu X, Wang Z, Lu Y, Liu F, Yang X, Wei X, Zhang Y
CrossRef
Google scholar
|
[81] |
Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD
CrossRef
Google scholar
|
/
〈 | 〉 |