New discovery rarely runs smooth: an update on progranulin/TNFR interactions

Betty C. Wang, Helen Liu, Ankoor Talwar, Jinlong Jian

PDF(1131 KB)
PDF(1131 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (11) : 792-803. DOI: 10.1007/s13238-015-0213-x
REVIEW
REVIEW

New discovery rarely runs smooth: an update on progranulin/TNFR interactions

Author information +
History +

Abstract

Progranulin (PGRN) is a growth factor implicated in various pathophysiological processes, including wound healing, inflammation, tumorigenesis, and neurodegeneration. It was previously reported that PGRN binds to tumor necrosis factor receptors (TNFR) and has therapeutic effects in inflammatory arthritis (Tang et. al, in Science 332:478−484, 2011); however, Chen et al. reported their inability to demonstrate the PGRN-TNFR interactions under their own conditions (Chen et. al, in J Neurosci 33:9202−9213, 2013). A letter-to-editor was then published by the original group in response to the Chen et al. paper that discussed the reasons for the latter’s inability to recapitulate the interactions. In addition, the group published follow-up studies that further reinforced and dissected the interactions of PGRNTNFR. Recently, the dispute about the legitimacy of PGRN-TNFR interactions appears to be finally settled with independent confirmations of these interactions in various conditions by numerous laboratories. This review presents a chronological update on the story of PGRN-TNFR interactions, highlighting the independent confirmations of these interactions in various diseases and conditions.

Keywords

progranulin / Atsttrin / TNFR / DR3 / TNF-α / TL1A

Cite this article

Download citation ▾
Betty C. Wang, Helen Liu, Ankoor Talwar, Jinlong Jian. New discovery rarely runs smooth: an update on progranulin/TNFR interactions. Protein Cell, 2015, 6(11): 792‒803 https://doi.org/10.1007/s13238-015-0213-x

References

[1]
Aggarwal BB (2014) Editorial: balancing tumor necrosis factor receptor I and tumor necrosis factor receptor II jointly for joint inflammation. Arthritis Rheumatol 66: 2657−2660
CrossRef Google scholar
[2]
Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4: 7
CrossRef Google scholar
[3]
Almeida S, Zhou L, Gao FB (2011) Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins. PloS One 6: e2 6454
CrossRef Google scholar
[4]
Alquezar C, Encarnación A, Moreno F, Munain A, Martín-Requero Á (2015) Progranulin deficiency induces over activation of Wnt5a expression via TNFα/NF-κB pathway in peripheral cells from FTLD-linked GRN mutation carriers. J Psychiatry Neurosci (in press)
[5]
Baker CA, Manuelidis L (2003) Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease. Proc Natl Acad Sci USA 100: 675−679
CrossRef Google scholar
[6]
Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442: 916−919
CrossRef Google scholar
[7]
Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. BioEssays 31: 1245−1254
CrossRef Google scholar
[8]
Bluml S, Binder NB, Niederreiter B, Polzer K, Hayer S, Tauber S, Schett G, Scheinecker C, Kollias G, Selzer E (2010) Antiinflammatory effects of tumor necrosis factor on hematopoietic cells in a murine model of erosive arthritis. Arthritis Rheum 62: 1608−1619
CrossRef Google scholar
[9]
Bluml S, Scheinecker C, Smolen JS, Redlich K (2012) Targeting TNF receptors in rheumatoid arthritis. Int Immunol 24: 275−281
CrossRef Google scholar
[10]
Bodmer JL, Burns K, Schneider P, Hofmann K, Steiner V, Thome M, Bornand T, Hahne M, Schroter M, Becker K (1997) TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity 6: 79−88
CrossRef Google scholar
[11]
Cavalli G, Dinarello CA (2015) Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology (Oxford).
CrossRef Google scholar
[12]
Chen X, Chang J, Deng Q, Xu J, Nguyen TA, Martens LH, Cenik B, Taylor G, Hudson KF, Chung J (2013) Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J Neurosci 33: 9202−9213
CrossRef Google scholar
[13]
Chinnaiyan AM, O’Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274: 990−992
CrossRef Google scholar
[14]
Conti P (1991) Interleukin-1 (IL-1) and interleukin-1 receptor antagonist (IL-1ra). Ann Med Int 142: 521−525
[15]
Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9: 271−285
CrossRef Google scholar
[16]
Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442: 920−924
CrossRef Google scholar
[17]
Diaz-Cueto L, Arechavaleta-Velasco F, Diaz-Arizaga A, Dominguez- Lopez P, Robles-Flores M (2012) PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/ granulin-epithelin precursor) protein expression in human ovarian cancer cell lines. Int J Gynecol Cancer 22: 945−950
CrossRef Google scholar
[18]
Egashira Y, Suzuki Y, Azuma Y, Takagi T, Mishiro K, Sugitani S, Tsuruma K, Shimazawa M, Yoshimura S, Kashimata M (2013) The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J Neuroinflammation 10: 105
CrossRef Google scholar
[19]
Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev 9: 482−493
CrossRef Google scholar
[20]
Frampton G, Invernizzi P, Bernuzzi F, Pae HY, Quinn M, Horvat D, Galindo C, Huang L, McMillin M, Cooper B (2012) Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Gut 61: 268−277
CrossRef Google scholar
[21]
Grunke M, Schulze-Koops H (2006) Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade. Ann Rheum Dis 65: 555−556
CrossRef Google scholar
[22]
Guo Z, Li Q, Han Y, Liang Y, Xu Z, Ren T (2012) Prevention of LPSinduced acute lung injury in mice by progranulin. Mediat Inflammation 2012: 10
CrossRef Google scholar
[23]
He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9: 225−229
CrossRef Google scholar
[24]
Huang K, Chen A, Zhang X, Song Z, Xu H, Cao J, Yin Y (2015) Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 145: 279−287
CrossRef Google scholar
[25]
Hwang HJ, Jung TW, Hong HC, Choi HY, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH (2013) Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-kappaB pathways. PloS One 8: e76679
CrossRef Google scholar
[26]
Jian J, Konopka J, Liu C (2013a) Insights into the role of progranulin in immunity, infection, and inflammation. J Leukoc Biol 93: 199−208
CrossRef Google scholar
[27]
Jian J, Zhao S, Tian Q, Gonzalez-Gugel E, Mundra JJ, Uddin SM, Liu B, Richbourgh B, Brunetti R, Liu CJ (2013b) Progranulin directly binds to the CRD2 and CRD3 of TNFR extracellular domains. FEBS Lett 587: 3428−3436
CrossRef Google scholar
[28]
Kawase R, Ohama T, Matsuyama A, Matsuwaki T, Okada T, Yamashita T, Yuasa-Kawase M, Nakaoka H, Nakatani K, Inagaki M (2013) Deletion of progranulin exacerbates atherosclerosis in ApoE knockout mice. Cardiovasc Res 100: 125−133
CrossRef Google scholar
[29]
Kessenbrock K, Frohlich L, Sixt M, Lammermann T, Pfister H, Bateman A, Belaaouaj A, Ring J, Ollert M, Fassler R (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Investig 118: 2438−2447
CrossRef Google scholar
[30]
Kimmerling KA, Furman BD, Mangiapani DS, Moverman MA, Sinclair SM, Huebner JL, Chilkoti A, Kraus VB, Setton LA, Guilak F (2015) Sustained intra-articular delivery of IL-1RA from a thermally-responsive elastin-like polypeptide as a therapy for post-traumatic arthritis. Eur Cells Mater 29: 124−139; discussion 139−140
[31]
Klein DE, Nappi VM, Reeves GT, Shvartsman SY, Lemmon MA (2004) Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature 430: 1040−1044
CrossRef Google scholar
[32]
Klein DE, Stayrook SE, Shi F, Narayan K, Lemmon MA (2008) Structural basis for EGFR ligand sequestration by Argos. Nature 453: 1271−1275
CrossRef Google scholar
[33]
Li M, Liu Y, Xia F, Wu Z, Deng L, Jiang R, Guo FJ (2014) Progranulin is required for proper ER stress response and inhibits ER stressmediated apoptosis through TNFR2. Cell Signal 26: 1539−1548
CrossRef Google scholar
[34]
Li H, Zhou B, Liu J, Li F, Li Y, Kang X, Sun H, Wu S (2015) Administration of progranulin (PGRN) triggers ER stress and impairs insulin sensitivity via PERK-eIF2alpha-dependent manner. Cell Cycle 14: 1893−1907
CrossRef Google scholar
[35]
Liu CJ (2011) Progranulin: a promising therapeutic target for rheumatoid arthritis. FEBS Lett 585: 3675−3680
CrossRef Google scholar
[36]
Liu CJ, Bosch X (2012) Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther 133: 124−132
CrossRef Google scholar
[37]
Liu C, Li XX, Gao W, Liu W, Liu DS (2014) Progranulin-derived Atsttrin directly binds to TNFRSF25 (DR3) and inhibits TNF-like ligand 1A (TL1A) activity. PloS One 9: e92743
CrossRef Google scholar
[38]
Liu J, Li H, Zhou B, Xu L, Kang X, Yang W, Wu S, Sun H (2015) PGRN induces impaired insulin sensitivity and defective autophagy in hepatic insulin resistance. Mol Endocrinol 29: 528−541
CrossRef Google scholar
[39]
Lopez de Munain A, Alzualde A, Gorostidi A, Otaegui D, Ruiz-Martinez J, Indakoetxea B, Ferrer I, Perez-Tur J, Saenz A, Bergareche A (2008) Mutations in progranulin gene: clinical, pathological, and ribonucleic acid expression findings. Biol Psychiatry 63: 946−952
CrossRef Google scholar
[40]
Ma CH, Lv Q, Yu YX, Zhang Y, Kong D, Niu KR, Yi CQ (2015) Protective effects of tumor necrosis factor-alpha blockade by adalimumab on articular cartilage and subchondral bone in a rat model of osteoarthritis. Brazilian journal of medical and biological research= Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al], 0
[41]
Maksymowych WP, Russell AS, Chiu P, Yan A, Jones N, Clare T, Lambert RG (2012) Targeting tumour necrosis factor alleviates signs and symptoms of inflammatory osteoarthritis of the knee. Arthritis Res Ther 14: R206
CrossRef Google scholar
[42]
Malaspina A, Kaushik N, de Belleroche J (2001) Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77: 132−145
CrossRef Google scholar
[43]
Maynard JA, Lindquist NC, Sutherland JN, Lesuffleur A, Warrington AE, Rodriguez M, Oh SH (2009) Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol J 4: 1542−1558
CrossRef Google scholar
[44]
McCann FE, Perocheau DP, Ruspi G, Blazek K, Davies ML, Feldmann M, Dean JL, Stoop AA, Williams RO (2014) Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis. Arthritis Rheumatol 66: 2728−2738
CrossRef Google scholar
[45]
Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8: 50−57
CrossRef Google scholar
[46]
Olson SA, Furman BD, Kraus VB, Huebner JL, Guilak F (2015) Therapeutic opportunities to prevent post-traumatic arthritis: Lessons from the natural history of arthritis after articular fracture. J Orthop Res: Off Publ Orthop Res Soc 33: 1266−1277
CrossRef Google scholar
[47]
Palfree RG, Bennett HP, Bateman A (2015) The evolution of the secreted regulatory protein progranulin. PloS One 10: e0133749
CrossRef Google scholar
[48]
Reis CR, van Assen AH, Quax WJ, Cool RH (2011) Unraveling the binding mechanism of trivalent tumor necrosis factor ligands and their receptors. Mol Cell Proteom: MCP 10(M110): 002808
CrossRef Google scholar
[49]
Scott LJ (2014) Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs 74: 1379−1410
CrossRef Google scholar
[50]
Serrero G (2003) Autocrine growth factor revisited: PC-cell-derived growth factor (progranulin), a critical player in breast cancer tumorigenesis. Biochem Biophys Res Commun 308: 409−413
CrossRef Google scholar
[51]
Sfikakis PP, Tsokos GC (2011) Towards the next generation of anti-TNF drugs. Clin Immunol 141: 231−235
CrossRef Google scholar
[52]
Tadagavadi RK, Reeves WB (2015) NODding off in acute kidney injury with progranulin? Kidney Int 87: 873−875
CrossRef Google scholar
[53]
Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332: 478−484
CrossRef Google scholar
[54]
Thurner L, Preuss KD, Fadle N, Regitz E, Klemm P, Zaks M, Kemele M, Hasenfus A, Csernok E, Gross WL (2013a) Progranulin antibodies in autoimmune diseases. J Autoimmun 42: 29−38
CrossRef Google scholar
[55]
Thurner L, Zaks M, Preuss KD, Fadle N, Regitz E, Ong MF, Pfreundschuh M, Assmann G (2013b) Progranulin antibodies entertain a proinflammatory environment in a subgroup of patients with psoriatic arthritis. Arthritis Res Ther 15: R211
CrossRef Google scholar
[56]
Thurner L, Stoger E, Fadle N, Klemm P, Regitz E, Kemele M, Bette B, Held G, Dauer M, Lammert F (2014) Proinflammatory progranulin antibodies in inflammatory bowel diseases. Dig Dis Sci 59: 1733−1742
CrossRef Google scholar
[57]
Thurner L, Fadle N, Regitz E, Kemele M, Klemm P, Zaks M, Stoger E, Bette B, Carbon G, Zimmer V (2015) The molecular basis for development of proinflammatory autoantibodies to progranulin. J Autoimmun 61: 17−28
CrossRef Google scholar
[58]
Tian QY, Zhao YP, Liu CJ (2012) Modified yeast-two-hybrid system to identify proteins interacting with the growth factor progranulin. J Vis Exp.
CrossRef Google scholar
[59]
Tian Q, Zhao S, Liu C (2014a) A solid-phase assay for studying direct binding of progranulin to TNFR and progranulin antagonism of TNF/TNFR interactions. Methods Mol Biol 1155: 163−172
CrossRef Google scholar
[60]
Tian Q, Zhao Y, Mundra JJ, Gonzalez-Gugel E, Jian J, Uddin SM, Liu C (2014b) Three TNFR-binding domains of PGRN act independently in inhibition of TNF-alpha binding and activity. Front Biosci (Landmark Ed) 19: 1176−1185
CrossRef Google scholar
[61]
Urech DM, Feige U, Ewert S, Schlosser V, Ottiger M, Polzer K, Schett G, Lichtlen P (2010) Anti-inflammatory and cartilageprotecting effects of an intra-articularly injected anti-TNF{alpha} single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann Rheum Dis 69: 443−449
CrossRef Google scholar
[62]
Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, Carmeliet P, Van Den Bosch L, Robberecht W (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181: 37−41
CrossRef Google scholar
[63]
van der Merwe PA, Brown MH, Davis SJ, Barclay AN (1993) Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48. EMBO J 12: 4945−4954
[64]
Verbruggen G, Wittoek R, Vander Cruyssen B, Elewaut D (2012) Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification. Ann Rheum Dis 71: 891−898
CrossRef Google scholar
[65]
Vercellino M, Grifoni S, Romagnolo A, Masera S, Mattioda A, Trebini C, Chiavazza C, Caligiana L, Capello E, Mancardi GL (2011) Progranulin expression in brain tissue and cerebrospinal fluid levels in multiple sclerosis. Mult Scler 17: 1194−1201
CrossRef Google scholar
[66]
Vezina A, Vaillancourt-Jean E, Albarao S, Annabi B (2014) Mesenchymal stromal cell ciliogenesis is abrogated in response to tumor necrosis factor-alpha and requires NF-kappaB signaling. Cancer Lett 345: 100−105
CrossRef Google scholar
[67]
Wang C, Luo X, Li P, Chen X, Zhou H, Zhang T (2015a) An improved method of GST-pull down based on fluorescence detection and its application to the analysis of the interaction between atsttrin and TNFR2. J Tianjin Univ Sci Technol 30: 34−40
[68]
Wang Q, Xia Q, Wu Y, Zhang X, Wen F, Chen X, Zhang S, Heng BC, He Y, Ouyang HW(2015b) 3D-printed atsttrin-incorporated alginate/hydroxyapatite scaffold promotes bone defect regeneration with tnf/tnfr signaling involvement. Adv Healthc Mater 4: 1701−1708
CrossRef Google scholar
[69]
Wei F, Zhang Y, Jian J, Mundra JJ, Tian Q, Lin J, Lafaille JJ, Tang W, Zhao W, Yu X (2014a) PGRN protects against colitis progression in mice in an IL-10 and TNFR2 dependent manner. Sci Rep 4: 7023
CrossRef Google scholar
[70]
Wei F, Zhang Y, Zhao W, Yu X, Liu CJ (2014b) Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions. PloS One 9: e112110
CrossRef Google scholar
[71]
Wu H, Siegel RM (2011) Medicine. Progranulin resolves inflammation. Science 332: 427−428
CrossRef Google scholar
[72]
Xia Q, Zhu S, Wu Y, Wang J, Cai Y, Chen P, Li J, Heng BC, Ouyang HW, Lu P (2015) Intra-articular transplantation of atsttrin-transduced mesenchymal stem cells ameliorate osteoarthritis development. Stem Cells Transl Med 4: 523−531
CrossRef Google scholar
[73]
Yamamoto Y, Takemura M, Serrero G, Hayashi J, Yue B, Tsuboi A, Kubo H, Mitsuhashi T, Mannami K, Sato M (2014) Increased serum GP88 (Progranulin) concentrations in rheumatoid arthritis. Inflammation 37: 1806−1813
CrossRef Google scholar
[74]
Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y, Iadecola C, Beal MF (2010) Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 207: 117−128
CrossRef Google scholar
[75]
Zhang Q, Lv H, Chen A, Liu F, Wu X (2012) Efficacy of infliximab in a rabbit model of osteoarthritis. Connect Tissue Res 53: 355−358
CrossRef Google scholar
[76]
Zhao YP, Tian QY, Frenkel S, Liu CJ (2013a) The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials 34: 6412−6421
CrossRef Google scholar
[77]
Zhao YP, Tian QY, Liu CJ (2013b) Progranulin deficiency exaggerates, whereas progranulin-derived Atsttrin attenuates, severity of dermatitis in mice. FEBS Lett 587: 1805−1810
CrossRef Google scholar
[78]
Zhao YP, Liu B, Tian QY, Wei JL, Richbourgh B, Liu CJ (2014) Progranulin protects against osteoarthritis through interacting with TNF-α and β-Catenin signalling. Ann Rheum Dis.
CrossRef Google scholar
[79]
Zheng Y, Brady OA, Meng PS, Mao Y, Hu F (2011) C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking. PloS One 6: e21023
CrossRef Google scholar
[80]
Zhou M, Tang W, Fu Y, Xu X, Wang Z, Lu Y, Liu F, Yang X, Wei X, Zhang Y (2015) Progranulin protects against renal ischemia/ reperfusion injury in mice. Kidney Int 87: 918−929
CrossRef Google scholar
[81]
Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111: 867−878
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(1131 KB)

Accesses

Citations

Detail

Sections
Recommended

/