Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures

Yudong Shi1, Yinggan Zhang2,3, Jiansen Wen1, Zhou Cui1, Jianhui Chen1, Xiaochun Huang4(), Cuilian Wen1, Baisheng Sa1(), Zhimei Sun2()

Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e76.

PDF
Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e76. DOI: 10.1002/mgea.76
RESEARCH ARTICLE

Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures

  • Yudong Shi1, Yinggan Zhang2,3, Jiansen Wen1, Zhou Cui1, Jianhui Chen1, Xiaochun Huang4(), Cuilian Wen1, Baisheng Sa1(), Zhimei Sun2()
Author information +
History +

Abstract

Machine learning (ML) techniques have made enormous progress in the field of materials science. However, many conventional ML algorithms operate as “blackboxes”, lacking transparency in revealing explicit relationships between material features and target properties. To address this, the development of interpretable ML models is essential to drive further advancements in AI-driven materials discovery. In this study, we present an interpretable framework that combines traditional machine learning with symbolic regression, using Janus III–VI vdW heterostructures as a case study. This approach enables fast and accurate predictions of stability and electronic structure. Our results demonstrate that the prediction accuracy using the classification model for stability, based on formation energy, reaches 0.960. On the other hand, the R2, MAE, and RMSE value using the regression model for electronic structure prediction, based on band gap, achieves 0.927, 0.113, and 0.141 on the testing set, respectively. Additionally, we identify a universal interpretable descriptor comprising five simple parameters that reveals the underlying physical relationships between the candidate heterostructures and their band gaps. This descriptor not only delivers high accuracy in band gap prediction but also provides explicit physical insight into the material properties.

Keywords

descriptor / interpretable machine learning / Janus III–VI van der Waals heterostructures

Cite this article

Download citation ▾
Yudong Shi, Yinggan Zhang, Jiansen Wen, Zhou Cui, Jianhui Chen, Xiaochun Huang, Cuilian Wen, Baisheng Sa, Zhimei Sun. Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures. Materials Genome Engineering Advances, 2024, 2(4): e76 https://doi.org/10.1002/mgea.76

References

1 Gregoire JM, Zhou L, Haber JA. Combinatorial synthesis for AI-driven materials discovery. Nat Synth. 2023;2(6):493-504.
2 Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Artificial intelligence applied to battery research: hype or reality? Chem Rev. 2022;122(12):10899-10969.
3 Ghalati MK, Zhang J, El-Fallah GMAM, Nenchev B, Dong H. Toward learning steelmaking—a review on machine learning for basic oxygen furnace process. MGE Adv. 2023;1(1):e6.
4 Junhao Y, Zhen L, Yujia Y, et al. Applications of machine learning method in high-performance materials design: a review. J Mater Inf. 2024;4(3):14.
5 Shu Y, Li T, Miao N, et al. Contact engineering for 2D Janus MoSSe/metal junctions. Nanoscale Horiz. 2024;9(2):264-277.
6 Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater. 2016;2(1):16028.
7 Fu Z, Liu W, Huang C, Mei T. A Review of performance prediction based on machine learning in materials Science. Nanomaterials. 2022;12(17):2957.
8 Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R. Accelerating materials property predictions using machine learning. Sci Rep. 2013;3(1):2810.
9 Schleder GR, Acosta CM, Fazzio A. Exploring two-dimensional materials thermodynamic stability via machine learning. ACS Appl Mater Interfaces. 2020;12(18):20149-20157.
10 Dong Y, Wu C, Zhang C, Liu Y, Cheng J, Lin J. Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. npj Comput Mater. 2019;5(1):26.
11 Jin H, Zhang H, Li J, et al. Discovery of novel two-dimensional photovoltaic materials accelerated by Machine Learning. J Phys Chem Lett. 2020;11(8):3075-3081.
12 Castellanos-Gomez A, Duan X, Fei Z, et al. van der Waals heterostructures. Nat Rev Methods Primers. 2022;2(1):58.
13 Ou Y, Yanez W, Xiao R, et al. ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. Nat Commun. 2022;13(1):2972.
14 Huang X, Xiong R, Hao C, et al. 2D Lateral heterojunction arrays with tailored interface band bending. Adv Mater. 2024;36(19):2308007.
15 Ju L, Bie M, Zhang X, Chen X, Kou L. Two-dimensional Janus van der Waals heterojunctions: a review of recent research progresses. Front Physiol. 2020;16(1):13201.
16 Zhang R, Zhang L, Zheng Q, Gao P, Zhao J, Yang J. Direct Z-scheme water splitting photocatalyst based on two-dimensional van der Waals heterostructures. J Phys Chem Lett. 2018;9(18):5419-5424.
17 Wu M, Song Z, Cui Y, et al. Machine learning-assisted design of nitrogen-rich covalent triazine frameworks photocatalysts. Adv Funct Mater. 2024:2413453.
18 Tian L, Minjie L, Wencong L, Tong-Yi Z. Recent progress in the datadriven discovery of novel photovoltaic materials. J Mater Inf. 2022;2(2):7.
19 Chen A, Wang Z, Zhang X, et al. Accelerated mining of 2D van der Waals heterojunctions by integrating supervised and unsupervised learning. Chem Mater. 2022;34(12):5571-5583.
20 Zhao Z, Shen Y, Zhu H, et al. Prediction model of type and band gap for photocatalytic g-GaN-based van der Waals heterojunction of density functional theory and machine learning techniques. Appl Surf Sci. 2023;640:158400.
21 Bandurin DA, Tyurnina AV, Yu GL, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol. 2017;12(3):223-227.
22 Cheng K, Guo Y, Han N, et al. 2D lateral heterostructures of group-III monochalcogenide: potential photovoltaic applications. Appl Phys Lett. 2018;112(14):143902.
23 Peng Q, Xiong R, Sa B, et al. Computational mining of photocatalysts for water splitting hydrogen production: two-dimensional InSe-family monolayers. Catal Sci Technol. 2017;7(13):2744-2752.
24 Chen J, Cai S, Xiong R, et al. High-performance III–VI monolayer transistors for flexible devices. Phys Chem Chem Phys. 2020;22(13):7039-7047.
25 Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides. ACS Nano. 2017;11(8):8192-8198.
26 Riis-Jensen AC, Deilmann T, Olsen T, Thygesen KS. Classifying the electronic and optical properties of Janus monolayers. ACS Nano. 2019;13(11):13354-13364.
27 Huang X, Xiong R, Hao C, et al. Experimental realization of monolayer α-tellurene. Adv Mater. 2024;36(6):2309023.
28 Guo S, Cui Z, Zou Y, Sa B. Z-scheme Al2SeTe/GaSe and Al2SeTe/InS van der Waals heterostructures for photocatalytic water splitting. Phys Chem Chem Phys. 2024;26(6):5368-5376.
29 Maymoun M, Elomrani A, Oukahou S, Bahou Y, Hasnaoui A, Sbiaai K. Enhancement in photocatalytic water splitting using van der Waals heterostructure materials based on penta-layers. Phys Chem Chem Phys. 2023;25(4):3401-3412.
30 Liu X, Mao B, Yang X, et al. Engineering radiative energy transfer and directional excitonic emission in van der Waals heterostructures. Laser Photon Rev. 2022;16(6):2100737.
31 Ma X, Fu S, Ding J, et al. Robust interlayer exciton in WS2/MoSe2 van der Waals heterostructure under high pressure. Nano Lett. 2021;21(19):8035-8042.
32 Bikerouin M, Chdil O, Balli M. Solar cells based on 2D Janus group-III chalcogenide van der Waals heterostructures. Nanoscale. 2023;15(15):7126-7138.
33 Pan J, Wang Y, Wang D, et al. Excitonic solar cells based on van der Waals heterojunctions of Janus III–VI chalcogenide monolayers. Nanotechnology. 2023;34(34):345701.
34 Chen J, He X, Sa B, et al. III–VI van der Waals heterostructures for sustainable energy related applications. Nanoscale. 2019;11(13):6431-6444.
35 Sa B, Hu R, Zheng Z, et al. High-throughput computational screening and machine learning modeling of Janus 2D III–VI van der Waals heterostructures for solar energy applications. Chem Mater. 2022;34(15):6687-6701.
36 Wang C, Zhang Y, Wen C, et al. Symbolic regression in materials science via dimension-synchronous-computation. J Mater Sci Technol. 2022;122:77-83.
37 Zhong X, Gallagher B, Liu S, Kailkhura B, Hiszpanski A, Han TY-J. Explainable machine learning in materials science. npj Comput Mater. 2022;8(1):204.
38 Wang G, Peng L, Li K, et al. ALKEMIE: an intelligent computational platform for accelerating materials discovery and design. Comput Mater Sci. 2021;186:110064.
39 Eisenman RL. A profit-sharing interpretation of shapley value for Nperson games. Syst Res. 1967;12(5):396-398.
40 Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressed-sensing method for identifying the best lowdimensional descriptor in an immensity of offered candidates. Phys Rev Mater. 2018;2(8):083802.
41 https://phases.imet-db.ru/elements/main.aspx
42 Lixin C, Zhiwen C, Xue Y, et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J Mater Inf. 2022;2(4):19.
43 Xu M, Xu M, Miao X. Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat. 2022;4(6):e12315.
44 Liu Y, Mu Y, Chen K, Li Y, Guo J. Daily Activity Feature selection in smart homes based on pearson correlation coefficient. Neural Process Lett. 2020;51(2):1771-1787.
45 Ma B, Wu X, Zhao C, et al. An interpretable machine learning strategy for pursuing high piezoelectric coefficients in (K0.5Na0.5)NbO3-based ceramics. npj Comput Mater. 2023;9(1):229.
46 Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J ComputSys Sci. 1997;55(1):119-139.
47 Random forests. Mach Learn. 2001;45:5-35.
48 Tianqi Chen CG. XGBoost: a scalable tree boosting System. In: proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery;2016:785-794.
49 Jerome HF. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189-1232.
50 Efron B. Logistic regression, survival analysis, and the kaplan-meier curve. J Am Stat Assoc. 1988;83(402):414-425.
51 Tsochantaridis I, Hofmann T, Joachims T, Altun Y. Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the twenty-first international conference on Machine learning. Association for Computing Machinery;2004:104.
52 Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery;2016:785-794.
53 Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003;118(18):8207-8215.
54 Eisenman RL. A profit-sharing interpretation of shapley value for Nperson games. Behav Sci. 1967;12(5):396-398.
PDF

Accesses

Citations

Detail

Sections
Recommended

/