Machine learning-assisted performance analysis of organic photovoltaics

Sijing Zhong1,2,, Jiayi Huang1,, Hengyu Meng1,, Zhuo Feng1, Qianyue Wang1, Zhenyu Huang1, Lijie Zhang1, Shiwei Li1, Weiyang Gong1, Yusen Huang1, Lei Ying1, Ning Li1,3()

Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e74.

PDF
Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e74. DOI: 10.1002/mgea.74
RESEARCH ARTICLE

Machine learning-assisted performance analysis of organic photovoltaics

  • Sijing Zhong1,2,, Jiayi Huang1,, Hengyu Meng1,, Zhuo Feng1, Qianyue Wang1, Zhenyu Huang1, Lijie Zhang1, Shiwei Li1, Weiyang Gong1, Yusen Huang1, Lei Ying1, Ning Li1,3()
Author information +
History +

Abstract

Although the power conversion efficiency of organic solar cells (OSCs) has been rapidly improved, there is still a lot of room for designing and developing new materials and their combinations to approach the efficiency limit. In this work, we establish a database of ∼100 bulk heterojunction OSCs composed of representative donors and acceptors reported in the literature, and train machine learning models to identify the efficiency potential of donor-acceptor combinations. We find that the fully connected neural network achieves a Pearson coefficient of up to 0.88 for predicting the efficiency of OSCs with different combinations of donors and acceptors. We use sure independence screening and sparsifying method with feature analysis to analyze and evaluate the performance of OSCs. To prove the reliability and viability of the predictive model, we introduce the theoretical efficiency limits and confidence tests into the process, which provides a simple but reliable solution to quickly analyze and evaluate the potential of OSC materials and material combinations.

Keywords

machine learning / material combinations / organic photovoltaics / performance analysis / reliability

Cite this article

Download citation ▾
Sijing Zhong, Jiayi Huang, Hengyu Meng, Zhuo Feng, Qianyue Wang, Zhenyu Huang, Lijie Zhang, Shiwei Li, Weiyang Gong, Yusen Huang, Lei Ying, Ning Li. Machine learning-assisted performance analysis of organic photovoltaics. Materials Genome Engineering Advances, 2024, 2(4): e74 https://doi.org/10.1002/mgea.74

References

1 Sun W, Zheng Y, Yang K, et al. Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci Adv. 2019;5(11):eaay4275.
2 Zhong S, Hsu W, Chen H, et al. A simple and promising prediction model to analyze the optical properties of organic photovoltaic materials. Sol RRL. 2024;8(12):2400288.
3 Lopez SA, Sanchez-Lengeling B, de Goes Soares J, Aspuru-Guzik A. Design principles and top non-fullerene acceptor candidates for organic photovoltaics. Joule. 2017;1(4):857-870.
4 Scharber MC, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells—towards 10 %energy-conversion efficiency . Adv Mater. 2006;18(6):789-794.
5 Li N, McCulloch I, Brabec CJ. Analyzing the efficiency , stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ Sci. 2018;11(6):1355-1361.
6 Greenstein BL, Hutchison GR. Organic photovoltaic efficiency predictor: data-driven models for non-fullerene acceptor organic solar cells. J Phys Chem Lett. 2022;13(19):4235-4243.
7 Nagasawa S, Al-Naamani E, Saeki A. Computer-aided screening of conjugated polymers for organic solar cell: classification by random forest. J Phys Chem Lett. 2018;9(10):2639-2646.
8 Xu Y, Xu X, Li M, Lu W. Prediction of photoelectric properties, especially power conversion efficiency of cells, of IQ1 and derivative dyes in high-efficiency dye-sensitized solar cells. Sol Energy. 2020;195:82-88.
9 Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. J Materiom. 2017;3:159-177.
10 Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559(7715):547-555.
11 Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater. 2019;6.
12 Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater. 2020;10(8).
13 Rodríguez-Martínez X, Pascual-San-José E, Fei Z, Heeney M, Guimerà R, Campoy-Quiles M. Predicting the photocurrent–composition dependence in organic solar cells. Energy Environ Sci. 2021;14(2):986-994.
14 Malhotra P, Biswas S, Chen F-C. Sharma GD. Prediction of nonradiative voltage losses in organic solar cells using machine learning. Sol Energy. 2021;228:175-186.
15 David TW, Anizelli H, Jacobsson TJ, Gray C, Teahan W, Kettle J. Enhancing the stability of organic photovoltaics through machine learning. Nano Energy. 2020;78:105342.
16 Mahmood A, Wang J-L. Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci. 2021;14(1):90-105.
17 Zhong S, Yap BK, Zhong Z, Ying L. Review on Y6-based semiconductor materials and their future development via machine learning. Crystals. 2022;12(2):168.
18 Shang Y, Xiong Z, An K, Hauch JA, Brabec CJ, Li N. Materials genome engineering accelerates the research and development of organic and perovskite photovoltaics. Mater Genome Eng Adv. 2024;2(1):e28.
19 Jiang Y, Yao C, Yang Y, Wang J. Machine learning approaches for predicting power conversion efficiency in organic solar cells: a comprehensive review. Sol RRL. 2024;8(22):2400567.
20 Malhotra P, Verduzco JC, Biswas S, Sharma GD. Active discovery of donor:acceptor combinations for efficient organic solar cells. ACS Appl Mater Interfaces. 2022;14(49):54895-54906.
21 Liu X, Shao Y, Lu T, Chang D, Li M, Lu W. Accelerating the discovery of high-performance donor/acceptor pairs in photovoltaic materials via machine learning and density functional theory. Mater Des. 2022;216:110561.
22 Sahu H, Rao W, Troisi A, Ma H. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors. Adv Energy Mater. 2018;8(24).
23 Lee M-H. Robust random forest based non-fullerene organic solar cells efficiency prediction. Org Electron. 2020;76:105465.
24 Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressed-sensing method for identifying the best lowdimensional descriptor in an immensity of offered candidates. Phys Rev Mater. 2018;2(8):083802.
25 Suchan K, Jacobsson TJ, Rehermann C, Unger EL, Kirchartz T, Wolff CM. Rationalizing performance losses of wide bandgap perovskite solar cells evident in data from the perovskite database. Adv Energy Mater. 2023;14(5).
PDF

Accesses

Citations

Detail

Sections
Recommended

/