Harnessing quantum power: Revolutionizing materials design through advanced quantum computation

Zikang Guo1, Rui Li1, Xianfeng He1, Jiang Guo2(), Shenghong Ju1,3()

Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e73.

PDF
Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e73. DOI: 10.1002/mgea.73
REVIEW

Harnessing quantum power: Revolutionizing materials design through advanced quantum computation

  • Zikang Guo1, Rui Li1, Xianfeng He1, Jiang Guo2(), Shenghong Ju1,3()
Author information +
History +

Abstract

The design of advanced materials for applications in areas of photovoltaics, energy storage, and structural engineering has made significant strides. However, the rapid proliferation of candidate materials—characterized by structural complexity that complicates the relationships between features—presents substantial challenges in manufacturing, fabrication, and characterization. This review introduces a comprehensive methodology for materials design using cutting-edge quantum computing, with a particular focus on quadratic unconstrained binary optimization (QUBO) and quantum machine learning (QML). We introduce the loop framework for QUBO-empowered materials design, including constructing high-quality datasets that capture critical material properties, employing tailored computational methods for precise material modeling, developing advanced figures of merit to evaluate performance metrics, and utilizing quantum optimization algorithms to discover optimal materials. In addition, we delve into the core principles of QML and illustrate its transformative potential in accelerating material discovery through a range of quantum simulations and innovative adaptations. The review also highlights advanced active learning strategies that integrate quantum artificial intelligence, offering a more efficient pathway to explore the vast, complex material design space. Finally, we discuss the key challenges and future opportunities for QML in material design, emphasizing their potential to revolutionize the field and facilitate groundbreaking innovations.

Keywords

active learning framework / materials design and optimization / quadratic unconstrained binary optimization / quantum machine learning

Cite this article

Download citation ▾
Zikang Guo, Rui Li, Xianfeng He, Jiang Guo, Shenghong Ju. Harnessing quantum power: Revolutionizing materials design through advanced quantum computation. Materials Genome Engineering Advances, 2024, 2(4): e73 https://doi.org/10.1002/mgea.73

References

1 Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559(7715):547-555.
2 Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data-assisted high-throughput computations for material design. Mater Genome Eng Adv. 2023;1(1):e11.
3 Ghalati MK, Zhang J, El-Fallah G, Nenchev B, Dong H. Toward learning steelmaking—a review on machine learning for basic oxygen furnace process. Mater Genome Eng Adv. 2023;1(1):e6.
4 Xiong T, Lee WSV, Dou S-X. Designing high-performance direct photo-rechargeable aqueous Zn-based energy storage technologies. Carbon Neutrality. 2024;3(1):1-12.
5 Chaves A, Azadani JG, Alsalman H, et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl. 2020;4(1):29.
6 Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103-110.
7 Barile C, Casavola C, De Cillis F. Mechanical comparison of new composite materials for aerospace applications. Composites Part B. 2019;162:122-128.
8 Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustain Mater Technol. 2015;4:1-17.
9 Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater. 2012;11(11):917-924.
10 Jiao P, Mueller J, Raney JR, Zheng X, Alavi AH. Mechanical metamaterials and beyond. Nat Commun. 2023;14(1):6004.
11 An J, Zhao X, Zhang Y, et al. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater. 2022;32(14):2110119.
12 Vergniory M, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z. A complete catalogue of high-quality topological materials. Nature. 2019;566(7745):480-485.
13 Lutz J-F, Börner HG. Modern trends in polymer bioconjugates design. Prog Polym Sci. 2008;33(1):1-39.
14 Zhu H, Teale S, Lintangpradipto MN, et al. Long-term operating stability in perovskite photovoltaics. Nat Rev Mater. 2023;8(9):569-586.
15 Jain A, Ong SP, Hautier G, et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. Apl Mater. 2013;1(1):011002.
16 Latimer K, Dwaraknath S, Mathew K, Winston D, Persson KA. Evaluation of thermodynamic equations of state across chemistry and structure in the materials project. npj Comput Mater. 2018;4(1):40.
17 Gjerding MN, Taghizadeh A, Rasmussen A, et al. Recent progress of the computational 2D materials database (C2DB). 2D Mater. 2021;8(4):044002.
18 Jacobsson TJ, Hultqvist A, García-Fernández A, et al. An openaccess database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat Energy. 2022;7(1):107-115.
19 Kitai K, Guo J, Ju S, et al. Designing metamaterials with quantum annealing and factorization machines. Phys Rev Res. 2020;2(1):013319.
20 Xie J. Prospects of materials genome engineering frontiers. Mater Genome Eng Adv. 2023;1(2):e17.
21 Wang R, Parent LR, Zhong Y. Sulfur poisoning mechanism of LSCF cathode material in the presence of SO2: a computational and experimental study. J Mat Inf. 2023;3(1):3.
22 An X, Yuan Y, Yang K, et al. Giant dielectric ceramic of Li0.3Ti0.02Ni0.68O with abundant oxygen vacancies enabling high lithium-ion conductivity in composite solid-state electrolyte. Carbon Neutrality. 2024;3(1):22.
23 Zhang R, Chen L, Min T, Mu Y-T. Hao L, Tao W-Q. Multiscale study of reactive transport and multiphase heat transfer processes in catalyst layers of proton exchange membrane fuel cells. Carbon Neutrality. 2024;3(1):1-27.
24 Mhadeshwar A, Mohanty T, Sparks TD. Borides as promising M2AX phase materials with high elastic modulus using machine learning and optimization. J Mater Inf. 2024;4(3):12.
25 Oaki Y, Igarashi Y. Materials informatics for 2D materials combined with sparse modeling and chemical perspective: toward small-datadriven chemistry and materials science. Bull Chem Soc Jpn. 2021;94(10):2410-2422.
26 Dyakonov M. When will useful quantum computers be constructed? Not in the foreseeable future, this physicist argues. Here’s why: The case against: Quantum computing. IEEE Spectr. 2019;56(3):24-29.
27 Hu F, Wang BN, Wang N, Wang C. Quantum machine learning with D-wave quantum computer. Quantum Eng. 2019;1(2):e12.
28 AbuGhanem M, Eleuch H. Two-qubit entangling gates for superconducting quantum computers. Results Phys. 2024;56:107236.
29 Dang A, Hill CD, Hollenberg LC. Optimising matrix product state simulations of Shor’s algorithm. Quantum. 2019;3:116.
30 Long G-L. Grover algorithm with zero theoretical failure rate. Phys Rev A. 2001;64(2):022307.
31 Zhang M, Dong L, Zeng Y, Cao N. Improved circuit implementation of the HHL algorithm and its simulations on QISKIT. Sci Rep. 2022;12(1):13287.
32 Zhang Y, Ni Q. Recent advances in quantum machine learning. Quantum Eng. 2020;2(1):e34.
33 Zaspel P, Huang B, Harbrecht H, von Lilienfeld OA. Boosting quantum machine learning models with a multilevel combination technique: Pople diagrams revisited. J Chem Theor Comput. 2018;15(3):1546-1559.
34 Gupta A, Chakraborty S, Ghosh D, Ramakrishnan R. Data-driven modeling of S → S1 excitation energy in the BODIPY chemical space: high-throughput computation, quantum machine learning, and inverse design. J Chem Phys. 2021;155(24):244102.
35 Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quant Chem. 2015;115(16):1058-1073.
36 Stone DG, Bradac C. Machine and quantum learning for diamondbased quantum applications. Mater Quantum Technol. 2023;3(1):012001.
37 J Guo, K Kitai, H Jippo, J Shiomi. Boosting the quality factor of Tamm structures to millions by quantum inspired classical annealer with factorization machine. arXiv preprint arXiv:2408.05799. 2024.
38 Ou C, Wang J, Sun C, et al. A high-Q mid-infrared Tamm plasmon absorber using MgF2 and Ge aperiodic tandem films designed by the genetic algorithm. AIP Adv. 2022;12(3):035052.
39 So S, Lee D, Badloe T, Rho J. Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Opt Mater Express. 2021;11(7):1863-1873.
40 Kim S, Jung S, Bobbitt A, Lee E, Luo T. Wide-angle spectral filter for energy-saving windows designed by quantum annealingenhanced active learning. Cell Rep Phys Sci. 2024;5(3):101847.
41 Kirkpatrick P, Ellis C. Chemical space. Nature. 2004;432(7019):823-824.
42 Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature. 2004;432(7019):855-861.
43 Dobson CM. Chemical space and biology. Nature. 2004;432(7019):824-828.
44 Barkoutsos PK, Gkritsis F, Ollitrault PJ, Sokolov IO, Woerner S, Tavernelli I. Quantum algorithm for alchemical optimization in material design. Chem Sci. 2021;12(12):4345-4352.
45 Lordi V, Nichol JM. Advances and opportunities in materials science for scalable quantum computing. MRS Bull. 2021;46(7):589-595.
46 DiVincenzo DP. Quantum gates and circuits. Proc R Soc London. Ser A Math Phys Eng Sci. 1998;454(1969):261-276.
47 Berry MV. Transitionless quantum driving. J Phys Math Theor. 2009;42(36):365303.
48 Allahverdyan AE, Balian R, Nieuwenhuizen TM. Understanding quantum measurement from the solution of dynamical models. Phys Rep. 2013;525(1):1-166.
49 Fazilat M, Zioui N, St-Arnaud J. A novel quantum model of forward kinematics based on quaternion/Pauli gate equivalence: application to a six-jointed industrial robotic arm. Results Eng. 2022;14:100402.
50 Thanasilp S, Wang S, Nghiem NA, Coles P, Cerezo M. Subtleties in the trainability of quantum machine learning models. Quantum Mach Intell 2023;5(1):21.
51 García-Ramos JE, Sáiz Á, Arias JM, Lamata L, Pérez-Fernández P. Nuclear physics in the era of quantum computing and quantum machine learning. Adv Quantum Technol. 2024:2300219.
52 Qi J, Yang CH, Chen PY. QTN-VQC: an end-to-end learning framework for quantum neural networks. Phys Scr. 2023;99(1):015111.
53 Domingo L, Carlo G, Borondo F. Optimal quantum reservoir computing for the noisy intermediate-scale quantum era. Phys Rev E. 2022;106(4):L043301.
54 Acampora G, Di Martino F, Massa A, Schiattarella R, Vitiello A. DNISQ: a reference model for distributed noisy intermediate-scale quantum computers. Inf Fusion. 2023;89:16-28.
55 Yu C, Heidari AA, Xue X, Zhang L, Chen H, Chen W. Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst Appl. 2021;181:115082.
56 Kak SC. Quantum neural computing. Adv Imag Electron Phys. 1995;94:259-313.
57 Zhang K, Jiang B, Chen F, Yang H. Directed-graph-learning-based diagnosis of multiple faults for high speed train with switched dynamics. IEEE Trans Cybern. 2021;53(3):1712-1724.
58 Zidan M, Abdel-Aty AH, El-shafei M, et al. Quantum classification algorithm based on competitive learning neural network and entanglement measure. Appl Sci. 2019;9(7):1277.
59 Hur T, Kim L, Park DK. Quantum convolutional neural network for classical data classification. Quantum Mach Intell 2022;4(1):3.
60 Agliardi G, Prati E. Optimal tuning of quantum generative adversarial networks for multivariate distribution loading. Quantum Rep. 2022;4(1):75-105.
61 Xu X, Ma L, Zeng T, Huang Q. Quantized graph neural networks for image classification. Mathematics. 2023;11(24):4927.
62 Gao Y, Yang LT, Zheng D, Yang J, Zhao Y. Quantized tensor neural network. ACM/IMS Trans Data Sci. 2022;2(4):1-18.
63 Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S. Continuous-variable quantum neural networks. Phys Rev Res. 2019;1(3):033063.
64 Markov M, Parot’kin S. Modeling a stationary electromagnetic field based on the Maxwell equations. Math Models Comput Simul. 2021;13(2):254-262.
65 Hockanson DM, Drewniak JL, Hubing TH, Van Doren TP. FDTD modeling of common-mode radiation from cables. IEEE Trans Electromagn C. 1996;38(3):376-387.
66 Heinzel A, Boerner V, Gombert A, et al. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Optik. 2000;47(13):2399-2419.
67 Liu AL, Venkatesh R, McBride M, Reichmanis E, Meredith JC, Grover MA. Small data machine learning: classification and prediction of poly(ethylene terephthalate) stabilizers using molecular descriptors. ACS Appl Polym Mater. 2020;2(12):5592-5601.
68 Vogt M, Bajorath J. Modeling Tanimoto similarity value distributions and predicting search results. Mol Inf. 2017;36(7):1600131.
69 Ajagekar A, You F. Molecular design with automated quantum computing-based deep learning and optimization. npj Comput Mater. 2023;9(1):143.
70 Isayev O, Fourches D, Muratov EN, et al. Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater. 2015;27(3):735-743.
71 Kadic M, Bückmann T, Schittny R, Wegener M. Metamaterials beyond electromagnetism. Rep Prog Phys. 2013;76(12):126501.
72 Chen Y, Ai B, Wong ZJ. Soft optical metamaterials. Nano Converg. 2020;7(1):18.
73 Cummer SA, Christensen J, Alù A. Controlling sound with acoustic metamaterials. Nat Rev Mater. 2016;1(3):1-13.
74 Hu R, Xi W, Liu Y, et al. Thermal camouflaging metamaterials. Mater Today. 2021;45:120-141.
75 Matsumori T, Taki M, Kadowaki T. Application of QUBO solver using black-box optimization to structural design for resonance avoidance. Sci Rep. 2022;12(1):12143.
76 Rendle S. Factorization machines with libFM. ACM Trans Intell Syst Technol (TIST). 2012;3(3):1-22.
77 Yıldırım E, Azad P, Öğüdücü ŞG. A multi-objective deep factorization machine for reciprocal recommendation. Eng Sci Technol Int J. 2021;24(6):1467-1477.
78 Heim B, Rønnow TF, Isakov SV, Troyer M. Quantum versus classical annealing of Ising spin glasses. Science. 2015;348(6231):215-217.
79 Quantum GA, Arya K, Arute F, et al. Hartree-Fock on a superconducting qubit quantum computer. Science. 2020;369(6507):1084-1089.
80 Cao Y, Romero J, Olson JP, et al. Quantum chemistry in the age of quantum computing. Chem Rev. 2019;119(19):10856-10915.
81 von Lilienfeld OA, Müller K-R, Tkatchenko A. Exploring chemical compound space with quantum-based machine learning. Nat Rev Chem. 2020;4(7):347-358.
82 Gaita-Ariño A, Luis F, Hill S, Coronado E. Molecular spins for quantum computation. Nat Chem. 2019;11(4):301-309.
83 Xia R, Kais S. Quantum machine learning for electronic structure calculations. Nat Commun. 2018;9(1):4195.
84 Wiebe N, Kapoor A, Svore KM. Quantum Deep Learning. (Preprint) arXiv, 1412.3489, submitted:2014.
85 Upadhya V, Sastry P, Indian J. An overview of restricted Boltzmann. Instr Sci. 2019;99:225-236.
86 Melko RG, Carleo G, Carrasquilla J, Cirac JI. Restricted Boltzmann machines in quantum physics. Nat Phys. 2019;15(9):887-892.
87 Kivlichan ID, McClean J, Wiebe N, et al. Quantum simulation of electronic structure with linear depth and connectivity. Phys Rev Lett. 2018;120(11):110501.
88 Sajjan M, Sureshbabu SH, Kais S. Quantum machine-learning for eigenstate filtration in two-dimensional materials. J Am Chem Soc. 2021;143(44):18426-18445.
89 Kurpas M, Faria Junior PE, Gmitra M, Fabian J. Spin-orbit coupling in elemental two-dimensional materials. Phys Rev B. 2019;100(12):125422.
90 Tian D, Qi F, Ma H, et al. Domino-like multi-emissions across red and near infrared from solid-state 2-/2, 6-aryl substituted BODIPY dyes. Nat Commun. 2018;9(1):2688.
91 Zampetti A, Minotto A, Squeo BM, et al. Highly efficient solid-state near-infrared organic light-emitting diodes incorporating A-D-A dyes based on α, β-unsubstituted “BODIPY”moieties. Sci Rep. 2017;7(1):1611.
92 Faber FA, Christensen AS, Huang B, Von Lilienfeld OA. Alchemical and structural distribution based representation for universal quantum machine learning. J Chem Phys. 2018;148(24):241717.
93 Peng B, Gong Z, Zhang Y, et al. Self-paced learning and privileged information based KRR classification algorithm for diagnosis of Parkinson’s disease. Neurosci Lett. 2022;766:136312.
94 Drwal MN, Griffith R. Combination of ligand-and structure-based methods in virtual screening. Drug Discov Today Technol. 2013;10(3):e395-e401.
95 Hellmann H. A new approximation method in the problem of many electrons. J Chem Phys. 1935;3(1):61.
96 Peruzzo A, McClean J, Shadbolt P, et al. A variational eigenvalue solver on a photonic quantum processor. Nat Commun. 2014;5(1):4213.
97 O’Brien TE, Senjean B, Sagastizabal R, et al. Calculating energy derivatives for quantum chemistry on a quantum computer. npj Quantum Inf. 2019;5(1):113.
98 Winter MB, Herzik MA, Jr, Kuriyan J, Marletta MA. Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proc Natl Acad Sci USA. 2011;108(43):E881-E889.
99 Sheikh Ansari A, Iyer AK, Gholipour B. Asymmetric transmission in nanophotonics. Nanophotonics. 2023;12(14):2639-2667.
100 Kim J-H, Kim DI, Lee SS, et al. Wide-angle deep ultraviolet antireflective multilayers via discrete-to-continuous optimization. Nanophotonics. 2023;12(10):1913-1921.
101 Kim S, Park S-J. Moon S, et al. Quantum annealing-aided design of an ultrathin-metamaterial optical diode. Nano Converg. 2024;11(1):16.
102 Shen B, Polson R, Menon R. Integrated digital metamaterials enables ultra-compact optical diodes. Opt Express. 2015;23(8):10847-10855.
103 Battal E, Yogurt TA, Okyay AK. Ultrahigh contrast one-way optical transmission through a subwavelength slit. Plasmonics. 2013;8(2):509-513.
104 Li Z, Li J, Wang W, et al. Near zero-threshold voltage P-N junction diodes based on super-semiconducting nanostructured Ag/Al arrays. Adv Mater. 2023;35(13):2210612.
105 Huang X, Ju S. Tutorial: AI-assisted exploration and active design of polymers with high intrinsic thermal conductivity. J Appl Phys. 2024;135(17):171101.
106 See https://github.com/dwavesystems/dimod for “dimod.”.
PDF

Accesses

Citations

Detail

Sections
Recommended

/