Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks

Bangtan Zong, Jinshan Li(), Changlu Zhou, Ping Wang, Bin Tang, Ruihao Yuan()

Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e68.

PDF
Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (4) : e68. DOI: 10.1002/mgea.68
RESEARCH ARTICLE

Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks

  • Bangtan Zong, Jinshan Li(), Changlu Zhou, Ping Wang, Bin Tang, Ruihao Yuan()
Author information +
History +

Abstract

Prediction of creep rupture life of high-temperature titanium alloys is crucial for their practical applications. The efficient representations (features) of the information encoded in the data are essential to achieve an accurate prediction model. Here, using convolutional neural networks (CNN) enhanced features, we obtain largely improved prediction models for creep rupture life. Comparison of CNN-based features with the original features in describing different samples reveals that the former, by assigning more individualized labels, outperforms the latter and underpins improved prediction models. This work suggests that beyond images, CNN is also suitable for numerical data to obtain enhanced features and surrogate models.

Keywords

convolutional neural networks / creep rupture life / high-temperature titanium alloys

Cite this article

Download citation ▾
Bangtan Zong, Jinshan Li, Changlu Zhou, Ping Wang, Bin Tang, Ruihao Yuan. Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks. Materials Genome Engineering Advances, 2024, 2(4): e68 https://doi.org/10.1002/mgea.68

References

1 Liu F, Chen Y, He C, et al. Tensile and very high cycle fatigue behaviors of a compressor blade titanium alloy at room and high temperatures. Mater Sci Eng A. 2021;811:141049.
2 Rugg D. Materials for future gas turbine applications. Mater Sci Technol. 2014;30(15):1848-1852.
3 Williams JC, Starke EA. Progress in structural materials for aerospace systems11The golden jubilee issue—selected topics in materials science and engineering: past, present and future , edited by S. Suresh. Acta Mater. 2003;51(19):5775-5799.
4 Alabort E, Kontis P, Barba D, Dragnevski K, Reed RC. On the mechanisms of superplasticity in Ti–6Al–4V. Acta Mater. 2016;105:449-463.
5 Larson FR, Miller J. A time-temperature relationship for rupture and creep stresses. J Fluids Eng-T AMSE. 1952;75(5):765-771.
6 Tamura M, Abe F, Shiba K, Sakasegawa H, Tanigawa H. Larson–miller constant of heat-resistant steel. Metall Mater Trans. 2013;44(6):2645-2661.
7 Ebenezer D, Koteswara Rao SR, Selvakumar G, Ram Prakash S. Evaluation of rupture life and Larson Miller parameter using Monkman-Grant relationship from impression creep data of magnesium alloy ZM21. Mater Today: Proc. 2022;62:583-588.
8 Santella ML, Tortorelli PF, Render M, et al. Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy. Mater Sci Eng A. 2022;838:142785.
9 Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater. 2021;6(8):730-755.
10 Fang J, Xie M, He X, et al. Machine learning accelerates the materials discovery. Mater Today Commun. 2022;33:104900.
11 Rao Z, Tung P-Y. Xie R, et al. Machine learning–enabled highentropy alloy discovery. Science. 2022;378(6615):78-85.
12 Xu P, Ji X, Li M, Lu W. Small data machine learning in materials science. NPJ Comput Mater. 2023;9(1):42.
13 Johnson NS, Vulimiri PS, To AC, et al. Invited review: machine learning for materials developments in metals additive manufacturing. Addit Manuf. 2020;36:101641.
14 Liu Y, Wu J, Wang Z, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater. 2020;195:454-467.
15 Wang J, Fa Y, Tian Y, Yu X. A machine-learning approach to predict creep properties of Cr–Mo steel with time-temperature parameters. J Mater Res Technol. 2021;13:635-650.
16 Swetlana S, Rout A, Singh AK. Machine learning assisted interpretation of creep and fatigue life in titanium alloys. APL Mach Learn. 2023;1(1).
17 Liu Y. Feature extraction and image recognition with convolutional neural networks. J Phys: Conf Ser. 2018;1087:062032.
18 Barboza MJR, Moura Neto C, Silva CRM. Creep mechanisms and physical modeling for Ti–6Al–4V, Mater Sci Eng A. 2004;369(1):201-209.
19 Evans RW, Hull RJ, Wilshire B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. J Mater Process Technol. 1996;56(1):492-501.
20 Zheng Z, Xiao S, Wang X, et al. High temperature creep behavior of an as-cast near-αTi–6Al–4Sn–4Zr-0.8Mo–1Nb–1W-0.25Si alloy, Mater Sci Eng A. 2021;803:140487.
21 Mishra H, Ghosal P, Nandy TK, Sagar PK. Influence of Fe and Ni on creep of near α-Ti alloy IMI834. Mater Sci Eng A. 2005;399(1):222-231.
22 Zheng Z, Kong F, Chen Y, Wang X. Effect of nano-Y2O3 addition on the creep behavior of an as-cast near-αtitanium alloy. Mater Char. 2021;178:111249.
23 Li W, Song B, Li X, Liu Y. Modelling of vacuum distillation in a rotating packed bed by Aspen. Appl Therm Eng. 2017;117:322-329.
24 Singh G, Satyanarayana DVV, Pederson R, Datta R, Ramamurty U. Enhancement in creep resistance of Ti–6Al–4V alloy due to boron addition, Mater Sci Eng A. 2014;597:194-203.
25 Oliveira VMCA, Vazquez AM, Aguiar C, Robin A, Barboza MJR. Nitride coatings improve Ti-6Al-4V alloy behavior in creep tests, Mater Sci Eng A. 2016;670:357-368.
26 Zhang Z, Fan J, Li R, et al. Orientation dependent behavior of tensilecreep deformation of hot rolled Ti65 titanium alloy sheet. J Mater Sci Technol. 2021;75:265-275.
27 Omprakash CM, Satyanarayana DVV, Kumar V. Effect of microstructure on creep and creep crack growth behaviour of titanium alloy. Trans Indian Inst Met. 2010;63(2):457-459.
28 Yuan R, Liu Z, Xu Y, et al. Optimizing electrocaloric effect in barium titanate-based room temperature ferroelectrics: combining Landau theory, machine learning and synthesis. Acta Mater. 2022;235:118054.
29 Yuan R, Liu Z, Balachandran PV, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater. 2018;30(7):1702884.
30 Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater. 2016;2(1):16028.
PDF

Accesses

Citations

Detail

Sections
Recommended

/