Integrating Urban Metabolism With Landscape Disciplines by Applying Technomass
Luis INOSTROZA
Integrating Urban Metabolism With Landscape Disciplines by Applying Technomass
● Points out four prevailing shortcomings of the current urban metabolism models | |
● Rethinks urban systems as ecosystems composed of biomass and technomass | |
● Proposes the ecosystem approach to integrate urban metabolism with landscape disciplines |
Urban metabolism provides a robust framework for analyzing urban development and its impacts. However, several conceptual and operational shortcomings have constrained the application of urban metabolism in understanding the overall urban processes, limiting the transfer of its potential benefits to design and planning. This article systematically analysed the rationale of the current urban metabolism models, focusing on four prevailing shortcomings from a transdisciplinary perspective: 1) utilizing an isolated state approach, which treats urban systems as isolated from other ecosystems; 2) ignoring internal processes within urban systems, known as the black box paradox; 3) employing a linear material approach that focuses on the path of single materials; and 4) overlooking the material productivity of urban systems, where energy and materials entering the system are used to reproduce the urban material structure and generate goods and tradable products. While these issues have been identified individually in existing scientific literature, there is a lack of holistic solutions. This article proposes an enhanced urban metabolism analytical approach—the ecosystem approach applying "technomass"—to address these shortcomings and provide practical solutions in landscape architecture and planning disciplines for sustainable urban development.
Urban Metabolism / Technomass / Urban Ecology / Ecosystem Approach / Metabolic Flux
[1] |
Broto, V. C. , Allen, A. , & Rapoport, E. (2012) Interdisciplinary Perspectives on Urban Metabolism. Journal of Industrial Ecology, 16 ( 6), 851– 861.
CrossRef
Google scholar
|
[2] |
Zhang, Y. (2013) Urban metabolism: A review of research methodologies. Environmental Pollution, ( 178), 463– 473.
|
[3] |
Decker, E. H. , Elliott, S. , Smith, F. A. , Blake, D. R. , & Rowland, F. S. (2000) Energy and material flow through the urban ecosystem. Annual Review of Energy and the Environment, ( 25), 685– 740.
|
[4] |
Golubiewski, N. (2012) Is there a metabolism of an urban ecosystem? An ecological critique. Ambio, 41 ( 7), 751– 764.
CrossRef
Google scholar
|
[5] |
Swyngedouw, E. (2005). Metabolic Urbanization: The Making of Cyborg Cities. In: N. Heynen, M. Kaika, & E. Swyngedouw (Eds.), In the Nature of Cities: Urban Political Ecology and the Politics of Urban Metabolism (pp. 36–55). Routledge.
|
[6] |
Kennedy, C. , Cuddihy, J. , & Engel-Yan, J. (2007) The Changing metabolism of cities. Journal of Industrial Ecology, 11 ( 2), 43– 59.
CrossRef
Google scholar
|
[7] |
Inostroza, L. (2018) The circularity of the urban ecosystem material productivity: The transformation of biomass into technomass in Southern Patagonia. Sustainable Cities and Society, ( 39), 335– 343.
|
[8] |
Inostroza, L. , & Zepp, H. (2021) The metabolic urban network: Urbanisation as hierarchically ordered space of flows. Cities, ( 109), 103029.
|
[9] |
Toledo, V., Alarcón-Cháires, P., & Barón, L. (2002). La Modernización Rural de México: Un Análisis Sociológico. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Universidad Nacional Autónoma de México.
|
[10] |
Huang, Q. , Zheng, X. , Liu, F. , Hu, Y. , & Zuo, Y. (2018) Dynamic analysis method to open the "black box" of urban metabolism. Resources, Conservation and Recycling, ( 139), 377– 386.
|
[11] |
Baccini, P., & Brunner, P. H. (2012). Metabolism of the Anthroposphere. Analysis, Evaluation, Design. The MIT Press.
|
[12] |
Inostroza, L. (2022). Biodiversity and Region: A Unitary System. The Paradigm Shift in 21st Century Urban Development. In: M. A. Mejia & J. D. Amaya-Espinel (Eds.), BiodiverCities by 2030. Transforming Cities with Biodiversity (p. 431). Instituto de Investigaciones de Recursos Biologicos Alexander von Humboldt.
|
[13] |
von Thünen, J. H. (1966). von Thünen's Isolated State: An English Edition of Der Isolierte Staat. Pergamon Press.
|
[14] |
Antequera, J. (2004). El Potencial de Sostenibilidad de los Asentamientos Humanos. Caixa de Sabadell.
|
[15] |
Rueda Palenzuela, S. (2002). Modelos Urbanos y Sostenibilidad. I Congreso de Ingeniería Civil, Territorio y Medio Ambiente (pp. 23–48). Colegio de Ingenieros de Caminos Canales y Puertos.
|
[16] |
Jacobs, J. (1972). The Economy of Cities. Penguin Books Ltd.
|
[17] |
Sahlins, M. (1972). Stone Age Economics. Aldine·Atherton, Inc.
|
[18] |
Smith, M. E. (2015) From prehistoric villages to cities: Settlement aggregation and community transformation by jennifer birch, ed. American Anthropologist, 117 ( 1), 178– 179.
|
[19] |
Moore, J. W. (2015). Capitalism in the Web of Life. Ecology and the Accumulation of Capital. Verso.
|
[20] |
Bunge, M. (1963) A general Black Box Theory. Philosophy of Science, 30 ( 4), 346– 358.
|
[21] |
González de Molina, M., & Toledo, V. M. (2014). The Social Metabolism: A Socio-Ecological Theory of Historical Change. Springer.
|
[22] |
Inostroza, L. (2014) Measuring urban ecosystem functions through 'Technomass'—A novel indicator to assess urban metabolism. Ecological Indicators, ( 42), 10– 19.
|
[23] |
Wiedenhofer, D. , Steinberger, J. K. , Eisenmenger, N. , & Haas, W. (2015) Maintenance and expansion: Modeling material stocks and flows for residential buildings and transportation networks in the EU25. Journal of Industrial Ecology, 19 ( 4), 538– 551.
|
[24] |
Brunner, P. H., & Rechberger, H. (2017). Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers. CRC Press.
|
[25] |
Goldstein, B. , Birkved, M. , Quitzau, M.-B. , & Hauschild, M. (2013) Quantification of urban metabolism through coupling with the life cycle assessment framework: Concept development and case study. Environmental Research Letters, 8 ( 3), 035024.
|
[26] |
Duro, J. A. , Perez-Laborda, A. , Löw, M. , Matej, S. , Plank, B. , Krausmann, F. , Wiedenhofer, D. , & Haberl, H. (2024) Spatial patterns of built structures co-determine nations' level of resource demand. Journal of Industrial Ecology, 28 ( 2), 289– 302.
|
[27] |
Maturana, H., & Varela, F. (1994). De Maquinas y Seres Vivos. Autopoiesis: La Organizacion de lo Vivo. Editorial Universitaria.
|
[28] |
Krausmann, F. , Wiedenhofer, D. , Lauk, C. , Haas, W. , Tanikawa, H. , Fishman, T. , Miatto, A. , Schandl, H. , & Haberl, H. (2017) Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. PNAS, 114 ( 8), 1880– 1885.
|
[29] |
Lemoine-Rodríguez, R. , Inostroza, L. , & Zepp, H. (2020) The global homogenization of urban form. An assessment of 194 cities across time. Landscape and Urban Planning, ( 204), 103949.
|
[30] |
Wentz, E. A. , York, A. M. , Alberti, M. , Conrow, L. , Fischer, H. , Inostroza, L. , Jantz, C. , Pickett, S. T. A. , Seto, K. C. , & Taubenböck, H. (2018) Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landscape and Urban Planning, ( 179), 55– 62.
|
[31] |
Kardulias, P. N. (2008) World systems theory. Encyclopedia of Archaeology, 2219
|
[32] |
White, D. F., & Wilbert, C. (2009). Technonatures. Environments, Technologies, Spaces, and Places in the Twenty-first Century. Wilfrid Laurier University Press.
|
[33] |
Prigogine, I., & Stenger, I. (1984). Order Out of Chaos. Man's New Dialogue With Nature. Bantam Books.
|
[34] |
Fischer-Kowalski, M. (1998) Society's metabolism. Journal of Industrial Ecology, 2 ( 1), 61– 78.
|
[35] |
Harvey, D. (1996) Cities or urbanization?. City: Analysis of Urban Trends, Culture, Theory, Policy, Action, 1 ( 1–2), 38– 61.
|
[36] |
Seto, K. C. , Reenberg, A. , Boone, C. G. , Fragkias, M. , Haase, D. , Langanke, T. , Marcotullio, P. , Munroe, D. K. , Olah, B. , & Simon, D. (2012) Urban land teleconnections and sustainability. PNAS, 109 ( 20), 7687– 7692.
|
[37] |
Liu, J. , Hull, V. , Batistella, M. , Defries, R. , Dietz, T. , Fu, F. , Hertel, T. W. , Cesar, R. , Lambin, E. F. , Li, S. , Martinelli, L. A. , Mcconnell, W. J. , Moran, E. F. , Naylor, R. , Ouyang, Z. , Polenske, K. R. , Reenberg, A. , de Miranda Rocha, G. , Simmons, C. S. , Verburg, P. H. , Vitousek, P. M. , Zhang, F. , & Zhu, C. (2013) Framing sustainability in a telecoupled world. Ecology and Society, ( 18), 2.
|
[38] |
Newell, J. P. , & Cousins, J. J. (2015) The boundaries of urban metabolism: Towards a political-industrial ecology. Progress in Human Geography, 39 ( 6), 702– 728.
|
[39] |
Wachsmuth, D. (2012) Three ecologies: Urban metabolism and the society-nature opposition. Sociological Quarterly, 53 ( 4), 506– 523.
|
[40] |
Pickett, S. T. A. , Burch, W. R. J. , Dalton, S. E. , Foresman, T. W. , Grove, J. M , & Rowntree, R. A. (1997) A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosystems, ( 1), 185– 199.
|
[41] |
McGrath, B. , & Pickett, S. T. A. (2011) The metacity: A conceptual framework for integrating ecology and urban design. Challenges, 2 ( 4), 55– 72.
|
[42] |
McGrath, B., & Shane, G. (2017). Metropolis, Megalopolis and Metacity. In: C. G. Crysler, S. Cairns, & H. Heynen (Eds.), The Sage Handbook of Architectural Theory (pp. 641–657). SAGE.
|
[43] |
Hornborg, A. (2001). The Power of the Machine: Global Inequalities of Economy, Technology, and Environment. AltaMira Press.
|
[44] |
Marx, K. (1887). Capital: A Critique of Political Economy (Vol. I). Progress Publishers.
|
[45] |
Dar, M. A., Raina, R., Singh, R., Kaur, S., Singh, H. P., & Batish, D. R. (2023). Role of Sustainable Urban Metabolism in Urban Planning. In: R. Bhadouria, S. Tripathi, P. Singh, P. K. Joshi, & R. Singh (Eds.), Urban Metabolism and Climate Change (pp. 151–169). Springer.
|
[46] |
Galan, J. , & Perrotti, D. (2019) Incorporating metabolic thinking into regional planning: The case of the Sierra Calderona Strategic Plan. Urban Planning, 4 ( 1), 152– 171.
|
[47] |
Otero Peña, D. , Perrotti, D. , & Mohareb, E. (2022) Advancing urban metabolism studies through GIS data: Resource flows, open space networks, and vulnerable communities in Mexico City. Journal of Industrial Ecology, 26 ( 4), 1333– 1349.
|
[48] |
Perrotti, D. (2022) Toward an agentic understanding of the urban metabolism: A landscape theory perspective. Urban Geography, 43 ( 1), 1– 11.
|
[49] |
Perrotti, D. , & Stremke, S. (2020) Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research. Environment and Planning B: Urban Analytics and City Science, 47 ( 4), 678– 694.
|
[50] |
Pistoni, R. , & Bonin, S. (2017) Urban metabolism planning and designing approaches between quantitative analysis and urban landscape. City, Territory and Architecture, ( 4), 20.
|
[51] |
Geddes, P. (1915). Cities in Evolution: An Introduction to the Town Planning Movement and to the Study of Civics. Williams.
|
[52] |
Liu, J. , Dietz, T. , Carpenter, S. R. , Taylor, W. W. , Alberti, M. , Deadman, P. , Redman, C. , Pell, A. , Folke, C. , Ouyang, Z. , & Lubchenco, J. (2021) Coupled human and natural systems: The evolution and applications of an integrated framework. Ambio, ( 50), 1778– 1783.
|
[53] |
Soonsawad, N. , Marcos-Martinez, R. , & Schandl, H. (2024) City-scale assessment of the material and environmental footprint of buildings using an advanced building information model: A case study from Canberra, Australia. Journal of Industrial Ecology, 28 ( 2), 247– 261.
|
[54] |
Dawazhaxi , Zhou, W. , & Cao, J. (2022) Integrating 2-D built-up and 3-D technomass reveals the continuity and hybridity of urban-rural gradient. Sustainable Cities and Society, ( 87), 104217.
|
[55] |
Angel, S. , Parent, J. , Civco, D. L. , Blei, A. , & Potere, D. (2011) The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, 75 ( 2), 53– 107.
|
/
〈 | 〉 |