
Cool Tree Architecture: A Descriptive Framework for a Tree Architecture Typology to Temper Urban Microclimates
René van der VELDE, Saskia de WIT, Michiel POUDEROIJEN
Landsc. Archit. Front. ›› 2023, Vol. 11 ›› Issue (5) : 30-42.
Cool Tree Architecture: A Descriptive Framework for a Tree Architecture Typology to Temper Urban Microclimates
As the elementary unit of the urban forest, trees temper thermal extremes in urban microclimates through shading and evapotranspiration, and by altering the movement of air. Metrics on shade performances of different species, however, are currently limited, which can be remedied by the development of a method to describe the range of species and cultivars via a structured overview of physical characteristics impacting radiation reflectivity, absorptivity, and transmissivity. This paper proposes a descriptive framework based on the concept of "tree architecture, " which has developed into a recognized field of plant study from the perspective of their physiognomy, morphology, and morphogenesis. The framework describes various architectural sub-traits within the overall trait categories of Crown, Wood, and Foliage. The descriptive framework can be used to develop a "Cool Tree Architecture Typology" (C-TAT), in which trees can be organized into similar types based on common physical characteristics. Further elaboration of sub-traits using observations of trees in controlled field laboratories resulted in new derivative classes for use as key in classifications for the C-TAT. The C-TAT can be used to organize the many species and cultivars occurring in, for example, Cfb Atlantic climate zone cities, to a lesser number of architectural types. This allows for more rapid evaluation and cooling performance calculations of tree inventories and can also be of value in assisting tree managers to propose more accurate thermal performance standards for trees in urban projects. The elaboration of tree architecture from an urban microclimate perspective complements existing elaborations and approaches in the field of tree architecture.
● A descriptive framework to elaborate the architectural characteristics of tree species relevant to solar radiation reflectivity, absorptivity, and transmissivity
● Critical tree architecture classes for cooling including Crown Proportion, Wood Grain, Wood Density, Wood Zoning, Foliage Texture, and Foliage Luminance
● The descriptive framework can be used to develop a Cool Tree Architecture Typology to categorize trees based on common physical characteristics
● Tree architecture is a novel frame for developing metrics and standards of urban trees in relation to thermal microclimate amelioration
Tree Architecture / Urban Heat Island / Climate Adaptation / Urban Microclimate Amelioration / Cool Tree Architecture Typology
Tab.1 Selected tree species for analysis |
Abies alba | Arbutus unedo | Cornus florida | Fraxinus ornus | |||
---|---|---|---|---|---|---|
Abies cephalonica | Areca catechu | Corylus avellana | Ginkgo biloba | |||
Abies concolor | Betula pendula | Corylus avellana var. contorta | Gleditsia triacanthos | |||
Abies nordmanniana | Betula pubescens | Crataegus oxyacantha | Gymnocladus dioicus | |||
Abies pinsapo | Broussonetia papyrifera | Cryptomeria japonica | Hippophae rhamnoides | |||
Acacia baileyana | Carica papaya | Cryptomeria japonica var. Globosa Nana | Hyphaene thebaica | |||
Acer campestre | Carpinus betulus | Cupressus arizonica | Ilex aquifolium | |||
Acer monspessulanum | Carya ovata | Cupressus cashmeriana | Jacaranda ovalifolia | |||
Acer negundo | Castanea sativa | Cupressus macrocarpa | Jubaea spectabilis | |||
Acer opalus | Catalpa bignonioides | Cupressus sempervirens | Juglans nigra | |||
Acer palmatum | Cedrela sinensis | Daphniphyllum macropodum | Juglans regia | |||
Acer palmatum var. atropurpereum | Cedrus atlantica | Davidia involucrata | Juniperus chinensis | |||
Acer platanoides | Cedrus atlantica var. glauca | Delonix regia | Juniperus communis | |||
Acer pseudoplatanus | Cedrus deodara | Diospyros kaki | Kigelia pinnata | |||
Acer saccharinum | Cedrus libani | Draecaena draco | Koelreuteria paniculata | |||
Adansonia digitata | Ceiba pentandra | Elaeagnus angustifolia | Laburnum anagyroides | |||
Adenium namaquanum | Ceratonia siliqua | Erythea armata | Lagerstroemia speciosa | |||
Aesculus carnea | Cercis siliquastrum | Eucalyptus camaldulensis | Larix decidua | |||
Aesculus hippocastanum | Cereus giganteus | Euphorbia abissina | Laurus nobilis | |||
Agave americana | Chamaecyparis lawsoniana | Fagus sylvatica | Libocedrus decurrens | |||
Ailanthus altissima | Chamaecyparis lawsoniana var. nidiformis | Fagus sylvatica var. asplenifolia | Liquidambar styraciflua | |||
Ailanthus altissima var. erythrocarpa | Chamaecyparis obtusa | Fagus sylvatica var. Atropurpurea Group | Liriodendron tulipifera | |||
Albizzia julibrissin | Chamaerops humilis | Fagus sylvatica var. pendula | Maclura pomifera | |||
Alnus glutinosa | Chorisia insignis | Ficus bengalensis | Magnolia grandiflora | |||
Alnus incana | Cinnamomum camphora | Ficus benjamina | Magnolia purpurea | |||
Alnus incana var. pendula | Citrus sinensis | Ficus carica | Mangifera indica | |||
Aloe dichotama | Cladrastis lutea | Ficus elastica | Melaleuca diosmifolia | |||
Araucaria araucana | Clerodendrum trichotomum | Ficus sycomorus | Melia azedarach | |||
Araucaria bidwillii | Cocos nucifera | Fraxinus excelsior | Mespilus germanica | |||
Araucaria brasiliensis | Cornus controversa | Fraxinus excelsior var. pendula | Morus alba | |||
Morus alba var. pendula | Pinus pinea | Quercus macrolepis | Sciadopitys verticillata | |||
Nolina longifolia | Pinus strobus | Quercus palustris | Sequoiadendron giganteum | |||
Nyssa sylvatica | Pinus sylvestris | Quercus petraea | Sequoia sempervirens | |||
Ochroma grandiflora | Pistacia terebinthus | Quercus pubescens | Styphnolobium japonicum | |||
Olea europaea | Pistacia vera | Quercus robur | Styphnolobium japonicum var. pendula | |||
Olea europaea var. oleaster | Platanus occidentalis | Quercus robur var. pyramidalis | Sorbus aucuparia | |||
Opuntia ficus-indica | Platanus orientalis | Quercus rubra | Sorbus domestica | |||
Osmanthus fragrans | Populus alba | Quercus suber | Sorbus hybrida | |||
Ostrya carpinifolia | Populus nigra | Quercus trojana | Sorbus hybrida var. pendula | |||
Pandanus utilis | Populus nigra var. italica | Ravenala madagascariensis | Stelitzia augusta | |||
Parrotia persica | Populus tremula | Rhizophera mangle | Tamarindus indica | |||
Paulownia imperialis | Prunus amygdalus | Rhus typhina | Tamarix gallica | |||
Phillyrea latifolia | Prunus avium | Robinia pseudoacacia | Taxodium distichum | |||
Phoenix canariensis | Prunus cerisifera | Robinia pseudoacacia var. bessoniana | Taxus baccata | |||
Phoenix dactylifera | Prunus cerasus | Robinia pseudoacacia var. monophylla | Taxus baccata var. fastigiata | |||
Photinia serrulata | Prunus serrulata | Robinia pseudoacacia var. pyramidalis | Thuja plicata | |||
Picea breweriana | Pseudotsuga douglasii | Roystonea regia | Tilia cordata | |||
Picea excelsa | Pseudotsuga douglasii var. pendula | Sabal palmetto | Tilia platyphyllos | |||
Picea excelsa var. pendula | Pterocarya fraxinifolia | Salix alba | Tilia tomentosa | |||
Picea omorica | Puya raimondi | Salix babylonica | Tsuga canadensis | |||
Picea pungens var. glauca | Pyrus communis | Salix caprea | Ulmus glabra | |||
Pinus canariensis | Pyrus salicifolia | Salix caprea var. pendula | Ulmus glabra var. pendula | |||
Pinus cembra | Quercus cerris | Salix daphnoides | Ulmus minor | |||
Pinus halapensis | Quercus coccifera | Salix eleagnos | Washingtonia filifera | |||
Pinus montezumae | Quercus coccinea | Salix matsudana var. tortuosa | Yucca brasiliensis | |||
Pinus mugo | Quercus farnetto | Salix pentandra | Yucca brevifolia | |||
Pinus nigra ssp. laricio | Quercus glauca | Salix triandra | Zelkova carpinifolia | |||
Pinus pinaster | Quercus ilex | Sambucus nigra | Zelkova serrata |
NOTES1. The species were source from Ref. [28], and the naming of species follows from the publication, and some nomenclature has since been revised.2. The highlighted ones are the species selected for this study. |
Tab.2 Crown descriptions and classification key for Prunus avium (example) |
Description | Illustration | |
---|---|---|
Growth Attributes | ● Fast-growing, relatively short-lived (100 ~ 150 years), deciduous tree ● Young Prunus avium (5 ~ 30 years) have erect-pyramidal "coniferous" crowns which turn into an ellipsoid form as they become adult ● The adult phase of Prunus avium is between 30 to 60 years with a height of 15 ~ 25 m ● Reiteration in mature stage can lead to clumping of the upper crown and fragmentation of the lower crown; mature specimens have columnar crowns and can reach a height of 30 meters in the Cfb climate zone | |
Crown Shape | Adult Prunus avium typically have an ellipsoid canopy but some specimens will develop a paraboloid or conical canopy depending on growing conditions | |
Classification | Illustration | |
Crown Proportion | Crowns of free-standing adult specimens have a width-to-height ratio of 1:1 | |
Tab.3 Wood descriptions and classification key for Prunus avium (example) |
Description | Illustration | |
---|---|---|
Growth Attributes | ● The uniform rhythmic growth of branches and twigs give young Prunus avium prominent cone-shaped crowns ● Mature trees reiterate the branching complex of young trees in the top half of the crown, which is a sequential process and gives rise to a more complex crown with a denser wood structure, while lower branches and twigs continue to die off and disappear, resulting in a more open underside of the crown | |
Trunk | ● The main stem of an adult Prunus avium has an orthotropic axis with monopodial, indeterminate growth ● The trunk grows rhythmically (in seasonal phases) and develops a slender, tapering bole ● A dominant apical meristem persists well into the adult phase, but as the tree reaches maturity the trunk splits into two or more meristems in the top third of the crown | |
Branches | ● Main branches of adult trees are predominantly plagiotropic, slanting slightly up or down ● Branching is spiral, with intervals on the vertical axis of 0.2 ~ 2 m, and typically extend out to half the height of the crown ● All branches have determinate growth, with around a third dying off between the young and adult phases ● Die-off occurs mainly in the lower half of the crown, resulting in open patches and less densely vegetated axes | |
Twigs | ● Twigs grow both orthotropically and plagiotropically, and typically also in downward direction ● Twigs' growth is medium-term, determinate and rhythmic, and twig density increases near the top half of the crown where less die-off occurs ● Typical wild Prunus avium are smaller annual twig complexes (brachyblasts), and these very short axes produce a single cluster of leaves every year with no particular growth direction and short-term, determinate growth (5 ~ 7 years) | |
Classification | Illustration | |
Wood Grain and Wood Density | Fine Grain–High Density for adult specimens | |
Wood Zoning | The organization of wood in the crown is Even | |
Tab.4 Foliage descriptions and classification key for Prunus avium (example) |
Description | Illustration | |
---|---|---|
Leaf Attributes | ● Size: 6 ~ 15 cm in length, with an average area of 50 cm2 ● Shape: simple, ovate to obovate, with serrated margins and a pronounced pointed apex ● Color: dark-green topside, light-green underside ● Texture: smooth topside, hairy underside; slightly leathery to touch ● Thickness: relatively thin ● Orientation: semi-vertical to vertical | |
Leaf Arrangement | ● Smaller annual twig complexes (brachyblasts) are typical for Prunus avium ● Leaves are pendulous, spaced alternately (distichous) along metamers, with clusters of leaves at the proximal end of the internode ● At the metamer scale both the leaf and the leaf unit are stratified in a pronounced horizontal fashion | |
Foliage Phenology | ● Prunus aviumis a deciduous tree with an average in-leaf season in the Cfb climate zone of 200 days ● Prunus avium attains full leaf cover around mid-May, begins autumn coloration in mid-October and fully sheds its foliage by mid-December | |
Classification | Illustration | |
Foliage Texture | Fine | |
Foliage Luminance | Medium |
Tab.5 Descriptive framework |
Description | Classification | |||||
---|---|---|---|---|---|---|
Crown | Growth Attributes | Crown Proportion | ● < 1:1● 1:2 | ● 1:1●> 1:2.5 | ● 1:1.5 | |
Crown Shape | ||||||
Wood | Growth Attributes | Wood Grain and Wood Density | ● Coarse Grain–Low Density● Average Grain–Medium Density● Fine Grain–High Density | |||
Trunk Morphology | ||||||
Branch Morphology | ||||||
Twig Morphology | Wood Zoning | ● Even | ● Uneven | |||
Foliage | Leaf Attributes | Foliage Texture and Foliage Luminance | ● Coarse–Light● Coarse–Medium● Coarse–Dark | ● Fine–Light● Fine–Medium● Fine–Dark | ||
Leaf Arrangement | ||||||
Foliage Phenology |
[1] |
Wilby, R. L. (2007). A review of climate change impacts on the built environment. Built environment, 33(1), 31– 45.
|
[2] |
Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., & Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letter, (13), 034003.
|
[3] |
Rogers, C. D. W., Gallant, A. J. E., & Tapper, N. J. (2019). Is the urban heat island exacerbated during heatwaves in southern Australian cities?. Theoretical and Applied Climatology, (137), 441– 457.
|
[4] |
Masson, V., Marchadier, C., Adolphe, L., Aguejdad, R., Avner, P., Bonhomme, M., Bretagne, G., Briottet, X., Bueno, B., De Munck, C., Doukari, O., Hallegatte, S., Hidalgo, J., Houet, T., Le Bras, J., Lemonsu, A., Long, N., Moine, M.-P., Morel, T., Nolorgues, L., Pigeon, G., Salagnac, J.-L., Viguié, V., & Zibouche, K. (2014). Adapting cities to climate change: A systemic modelling approach. Urban Climate, (10), 407– 429.
|
[5] |
Block, A. H., Livesley, S. J., & Williams, N. S. G. (2012). Responding to the Urban Heat Island: A Review of the Potential of Green Infrastructure (pp. 1–62). Victorian Center for Climate Change Adaptation.
|
[6] |
Solecki, W. D., Rosenzweig, C., Parshall, L., Pope, G., Clark, M., Cox, J., & Wiencke, M. (2005). Mitigation of the heat island effect in urban New Jersey. Environmental Hazards, 6(1), 39– 49.
|
[7] |
Gill, S. E., Handley, J., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115– 133.
|
[8] |
Gaffin, S. R., Rosenzweig, C., & Kong, A. Y. Y. (2012). Adapting to climate change through urban green infrastructure. Nature Climate Change, 2(10), 704.
|
[9] |
Miller, R. W., Hauer, R. J., & Werner, L. P. (2015). (p. 4). Waveland Press.
|
[10] |
Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 45(1), 119– 124.
|
[11] |
Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, (134), 127– 138.
|
[12] |
Oke, T. R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London, B, 324(1223), 335– 349.
|
[13] |
Mayer, H., Kuppe, S., Holst, J., Imbery, F.,& Matzarakis, A. (2009). Human Thermal Comfort Below the Canopy of Street Trees on a Typical Central European Summer Day. 5th Japanese–German Meeting on Urban Climatology(Vol. 18, pp. 211–219). Meteorological Institute, Albert-Ludwigs-University of Freiburg.
|
[14] |
Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2011). The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. International Journal of Climatology, 31(10), 1498– 1506.
|
[15] |
Helletsgruber, C., Gillner, S., Gulyás, Á., Junker, R. R., Tanács, E., & Hof, A. (2020). Identifying tree traits for cooling urban heat islands—A cross-city empirical analysis. Forests, 11(10), 1064.
|
[16] |
Rahman, M. A., Stratopoulos, L. M. F., Moser-Reischl, A., Zölch, T., Häberle, K., Rötzer, T., Pretzsch, H., & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, (170), 106606.
|
[17] |
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, (5), 1– 12.
|
[18] |
von Goethe, J. W. (1790). Attempt to Explain the Metamorphosis of Plants [Versuch die Metamorphose der Pflanzen zu erklären]. Carl Wilhelm Ettinger.
|
[19] |
von Humboldt, A., & Bonpland, A. (1790). Ideas for A Geography of Plants Together With a Natural History of the Tropical Countries: Based on Observations and Measurements Made From the 10th Degree North to the 10th Degree South Latitude in the Years 1799, 1800, 1801, 1802 and 1803 [Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind] (Vol. 1). F. G. Cotta.
|
[20] |
Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography, Being the collected papers of C. Raunkiaer (H. Gilbert-Carter, A. Fausbøll, & A. G. Tansley, Trans.). Oxford at the Clarendon Press.
|
[21] |
Rose, J. C. (1958). Creative Gardens. Reinhold Publishing Corporation.
|
[22] |
Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (2012). Tropical Trees and Forests: An Architectural Analysis. Springer Verlag.
|
[23] |
Johnston, R., & Lacey, C. (1984). A proposal for the classification of tree-dominated vegetation in Australia. Australian Journal of Botany, 32(5), 529– 549.
|
[24] |
Fordyce, I. R., Duff, G. A., & Eamus, D. (1995). The ecophysiology of Allosyncarpia ternata (Myrtaceae) in northern Australia: Tree physiognomy, leaf characteristics and assimilation at contrasting sites. Australian Journal of Botany, 43(4), 367– 377.
|
[25] |
Barthélémy, D., & Caraglio, Y. (2007). Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of botany, 99(3), 375– 407.
|
[26] |
Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2017). Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, (157), 502– 511.
|
[27] |
Rix, M. (2013). The Golden Age of Botanical Art. The University of Chicago Press.
|
[28] |
Leonardi, C., & Stagi, F. (2019). The Architecture of Trees. Princeton Architectural Press.
|
[29] |
More, D., & White, J. (2013). Illustrated Trees of Britain & Europe (2nd ed.). Bloomsbury.
|
[30] |
MacEvoy, B. (2005, August 1). Modern color models—Munsell color system. Color Vision.
|
[31] |
Evstigneev, O. I., & Korotkov, V. N. (2016). Ontogenetic stages of trees: An overview. Russian Journal of Ecosystem Ecology, 1(2), 1– 31.
|
[32] |
Roman, L. A., & Scatena, F. N. (2011). Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban Forestry & Urban Greening, 10(4), 269– 274.
|
[33] |
Krüssmann, G. (1986). Manual of Cultivated Broad-Leaved Trees & Shrubs (Vols. 1–3). Timber Press.
|
[34] |
de Koning, J., & van den Broek, J. W. (2012). Dendrology of the Lowlands [Dendrologie van de lage landen]. KNNV Uitgeverij.
|
[35] |
San-Miguel-Ayanz, J., De Rigo, D. Caudullo, G., Durrant, T. H., & Mauri, A. (Eds.) (2016). European Atlas of Forest Tree Species. Publications Office of the European Union.
|
[36] |
Watson, D. J. (1947). Comparative physiological studies in growth of field crops. Annals of Botany, 11(1), 41– 76.
|
/
〈 |
|
〉 |