Cool Tree Architecture: A Descriptive Framework for a Tree Architecture Typology to Temper Urban Microclimates
René van der VELDE, Saskia de WIT, Michiel POUDEROIJEN
Cool Tree Architecture: A Descriptive Framework for a Tree Architecture Typology to Temper Urban Microclimates
As the elementary unit of the urban forest, trees temper thermal extremes in urban microclimates through shading and evapotranspiration, and by altering the movement of air. Metrics on shade performances of different species, however, are currently limited, which can be remedied by the development of a method to describe the range of species and cultivars via a structured overview of physical characteristics impacting radiation reflectivity, absorptivity, and transmissivity. This paper proposes a descriptive framework based on the concept of "tree architecture, " which has developed into a recognized field of plant study from the perspective of their physiognomy, morphology, and morphogenesis. The framework describes various architectural sub-traits within the overall trait categories of Crown, Wood, and Foliage. The descriptive framework can be used to develop a "Cool Tree Architecture Typology" (C-TAT), in which trees can be organized into similar types based on common physical characteristics. Further elaboration of sub-traits using observations of trees in controlled field laboratories resulted in new derivative classes for use as key in classifications for the C-TAT. The C-TAT can be used to organize the many species and cultivars occurring in, for example, Cfb Atlantic climate zone cities, to a lesser number of architectural types. This allows for more rapid evaluation and cooling performance calculations of tree inventories and can also be of value in assisting tree managers to propose more accurate thermal performance standards for trees in urban projects. The elaboration of tree architecture from an urban microclimate perspective complements existing elaborations and approaches in the field of tree architecture.
● A descriptive framework to elaborate the architectural characteristics of tree species relevant to solar radiation reflectivity, absorptivity, and transmissivity
● Critical tree architecture classes for cooling including Crown Proportion, Wood Grain, Wood Density, Wood Zoning, Foliage Texture, and Foliage Luminance
● The descriptive framework can be used to develop a Cool Tree Architecture Typology to categorize trees based on common physical characteristics
● Tree architecture is a novel frame for developing metrics and standards of urban trees in relation to thermal microclimate amelioration
Tree Architecture / Urban Heat Island / Climate Adaptation / Urban Microclimate Amelioration / Cool Tree Architecture Typology
[1] |
Wilby, R. L. (2007). A review of climate change impacts on the built environment. Built environment, 33(1), 31– 45.
|
[2] |
Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., & Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letter, (13), 034003.
|
[3] |
Rogers, C. D. W., Gallant, A. J. E., & Tapper, N. J. (2019). Is the urban heat island exacerbated during heatwaves in southern Australian cities?. Theoretical and Applied Climatology, (137), 441– 457.
|
[4] |
Masson, V., Marchadier, C., Adolphe, L., Aguejdad, R., Avner, P., Bonhomme, M., Bretagne, G., Briottet, X., Bueno, B., De Munck, C., Doukari, O., Hallegatte, S., Hidalgo, J., Houet, T., Le Bras, J., Lemonsu, A., Long, N., Moine, M.-P., Morel, T., Nolorgues, L., Pigeon, G., Salagnac, J.-L., Viguié, V., & Zibouche, K. (2014). Adapting cities to climate change: A systemic modelling approach. Urban Climate, (10), 407– 429.
|
[5] |
Block, A. H., Livesley, S. J., & Williams, N. S. G. (2012). Responding to the Urban Heat Island: A Review of the Potential of Green Infrastructure (pp. 1–62). Victorian Center for Climate Change Adaptation.
|
[6] |
Solecki, W. D., Rosenzweig, C., Parshall, L., Pope, G., Clark, M., Cox, J., & Wiencke, M. (2005). Mitigation of the heat island effect in urban New Jersey. Environmental Hazards, 6(1), 39– 49.
|
[7] |
Gill, S. E., Handley, J., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115– 133.
|
[8] |
Gaffin, S. R., Rosenzweig, C., & Kong, A. Y. Y. (2012). Adapting to climate change through urban green infrastructure. Nature Climate Change, 2(10), 704.
|
[9] |
Miller, R. W., Hauer, R. J., & Werner, L. P. (2015). (p. 4). Waveland Press.
|
[10] |
Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 45(1), 119– 124.
|
[11] |
Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, (134), 127– 138.
|
[12] |
Oke, T. R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London, B, 324(1223), 335– 349.
|
[13] |
Mayer, H., Kuppe, S., Holst, J., Imbery, F.,& Matzarakis, A. (2009). Human Thermal Comfort Below the Canopy of Street Trees on a Typical Central European Summer Day. 5th Japanese–German Meeting on Urban Climatology(Vol. 18, pp. 211–219). Meteorological Institute, Albert-Ludwigs-University of Freiburg.
|
[14] |
Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2011). The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. International Journal of Climatology, 31(10), 1498– 1506.
|
[15] |
Helletsgruber, C., Gillner, S., Gulyás, Á., Junker, R. R., Tanács, E., & Hof, A. (2020). Identifying tree traits for cooling urban heat islands—A cross-city empirical analysis. Forests, 11(10), 1064.
|
[16] |
Rahman, M. A., Stratopoulos, L. M. F., Moser-Reischl, A., Zölch, T., Häberle, K., Rötzer, T., Pretzsch, H., & Pauleit, S. (2020). Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, (170), 106606.
|
[17] |
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, (5), 1– 12.
|
[18] |
von Goethe, J. W. (1790). Attempt to Explain the Metamorphosis of Plants [Versuch die Metamorphose der Pflanzen zu erklären]. Carl Wilhelm Ettinger.
|
[19] |
von Humboldt, A., & Bonpland, A. (1790). Ideas for A Geography of Plants Together With a Natural History of the Tropical Countries: Based on Observations and Measurements Made From the 10th Degree North to the 10th Degree South Latitude in the Years 1799, 1800, 1801, 1802 and 1803 [Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind] (Vol. 1). F. G. Cotta.
|
[20] |
Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography, Being the collected papers of C. Raunkiaer (H. Gilbert-Carter, A. Fausbøll, & A. G. Tansley, Trans.). Oxford at the Clarendon Press.
|
[21] |
Rose, J. C. (1958). Creative Gardens. Reinhold Publishing Corporation.
|
[22] |
Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (2012). Tropical Trees and Forests: An Architectural Analysis. Springer Verlag.
|
[23] |
Johnston, R., & Lacey, C. (1984). A proposal for the classification of tree-dominated vegetation in Australia. Australian Journal of Botany, 32(5), 529– 549.
|
[24] |
Fordyce, I. R., Duff, G. A., & Eamus, D. (1995). The ecophysiology of Allosyncarpia ternata (Myrtaceae) in northern Australia: Tree physiognomy, leaf characteristics and assimilation at contrasting sites. Australian Journal of Botany, 43(4), 367– 377.
|
[25] |
Barthélémy, D., & Caraglio, Y. (2007). Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of botany, 99(3), 375– 407.
|
[26] |
Sanusi, R., Johnstone, D., May, P., & Livesley, S. J. (2017). Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, (157), 502– 511.
|
[27] |
Rix, M. (2013). The Golden Age of Botanical Art. The University of Chicago Press.
|
[28] |
Leonardi, C., & Stagi, F. (2019). The Architecture of Trees. Princeton Architectural Press.
|
[29] |
More, D., & White, J. (2013). Illustrated Trees of Britain & Europe (2nd ed.). Bloomsbury.
|
[30] |
MacEvoy, B. (2005, August 1). Modern color models—Munsell color system. Color Vision.
|
[31] |
Evstigneev, O. I., & Korotkov, V. N. (2016). Ontogenetic stages of trees: An overview. Russian Journal of Ecosystem Ecology, 1(2), 1– 31.
|
[32] |
Roman, L. A., & Scatena, F. N. (2011). Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban Forestry & Urban Greening, 10(4), 269– 274.
|
[33] |
Krüssmann, G. (1986). Manual of Cultivated Broad-Leaved Trees & Shrubs (Vols. 1–3). Timber Press.
|
[34] |
de Koning, J., & van den Broek, J. W. (2012). Dendrology of the Lowlands [Dendrologie van de lage landen]. KNNV Uitgeverij.
|
[35] |
San-Miguel-Ayanz, J., De Rigo, D. Caudullo, G., Durrant, T. H., & Mauri, A. (Eds.) (2016). European Atlas of Forest Tree Species. Publications Office of the European Union.
|
[36] |
Watson, D. J. (1947). Comparative physiological studies in growth of field crops. Annals of Botany, 11(1), 41– 76.
|
/
〈 | 〉 |