2025-04-26 2019, Volume 26 Issue 3

  • Select all
  • Chong-bin Zhao , Bruce Hobbs , Alison Ord

    Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.

  • Zhen Yan , Guo-zhen Fang

    A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1-hydroxy-2-naphthoyl amido)-(L)-phenylalanine (HNA-Phe) as the alternative template. The final composite combined the advantages of the high selectivity of MIP with the high fluorescence intensity of UCNPs which was selective and sensitive to OTA. Under the optimal condition, the fluorescence intensity of UCNPs@SiO2@MIP decreases linearly when the concentration of OTA increases from 0.05 to 1.0 mg/L. The detection limit of OTA with the method was 0.031 mg/L. At three spiked concentration levels (50, 100 and 200 µg/kg), the recovery ranges of OTA in corn, rice and feed are 88.0%–91.6%, 80.2%–91.6% and 89.2%–90.4%, respectively.

  • Wei-ping Ma , Bao-yu Wang , Wen-chao Xiao , Xiao-ming Yang , Yi Kang

    Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.

  • Yi-bing Zhang , Jian-hua Chen , Yu-qiong Li , Pei-xin Zhang

    Density functional theory (DFT) simulation was performed to investigate the adsorption mechanisms between frothers and gas-liquid interface. In water phase, the polar head group of the frother molecule was connected with water molecules by hydrogen bonding, while the non-polar group showed that hydrophobic property and water molecules around it were repelled away. The adsorption of water molecules on single frother molecule suggests that the complexes of α-terpineol-7H2O, MIBC-7H2O and DF200-13H2O reach their stable structure. The hydration shell affects both the polar head group and the non-polar group. The liquid film drainage rate of DF200 is the lowest, while α-terpineol and MIBC are almost the same. The adsorption layer of frother molecules adsorbed at the gas-liquid interface reveals that the α-terpineol molecules are more neatly arranged and better distributed. The DF200 molecules are arranged much more loosely than MIBC molecules. These results suggest that the α-terpineol molecule layer could better block the diffusion of gas through the liquid film than DF200 and MIBC. The simulation results indicate that the foam stability of α-terpineol is the best, followed by DF200 and MIBC.

  • Guo-feng Wang , Xiao Li , Dan-feng Li , Yi-bin Gu , Hui Fang

    The resistance heating method has been one of the prospective techniques for hot processing and welding techniques. The thermal behavior under different densities of electric current and the effect of electric current at temperature of 780 °C using low density of electric current of 6.70 A/mm2 on the B2+O lamellar microstructure were investigated for Ti2AlNb alloy sheet. The stable temperature denoted a balanced state between the Joule heat and the dissipation of heat including heat conduction, convection and radiation while the distribution of temperature was nonuniform. The highest temperatures of electric current heating samples increased as the density of electric current was elevated. In order to understand the specific effect of electric current on B2+O microstructure, heat treatment for microstructural homogeneity was introduced to this study. After that, according to the microstructural observations by common characterization techniques in the resistance-heating sample and the isothermal furnace-heating sample after homogenizing treatment, few significant differences in content and orientation of phases can be directly and explicitly found except the thermal effect from the applied electric current. The results will provide reference to this prospective forming and welding techniques and the application for Ti2AlNb alloys using resistance heating in the near future.

  • Suo-quan Zhang , Si-hai Jiao , Jian-hua Ding , Di Wan , Zhen-yu Liu , Guo-dong Wang

    In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 µm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 µm/s.

  • Zheng-cheng Yuan , Zheng-wu Jiang , Qing Chen

    The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.

  • Jing-yuan Xu , Shu-yun Tang , Yun-ren Qiu

    The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.

  • Tian-yu Li , Hui-ying Liu , Zhang Zhi-wen , Ding Dao-lin

    The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construction vehicles. The effect of power distribution and direction on shift characteristics of the parallel hybrid vehicle with operating loads is evaluated, which must be considered for optimal shift control. A power distribution factor is defined to accurately describe the power distribution and direction in various parallel hybrid systems. This paper proposes a Levenberg-Marquardt algorithm optimized neural network shift scheduling strategy. The methodology contains two objective functions, it is a dynamic combination of a dynamic shift schedule for optimal vehicle acceleration, and an energy-efficient shift schedule for optimal powertrain efficiency. The study is performed on a test bench under typical operating conditions of a wheel loader. The experimental results show that the proposed strategies offer effective and competitive shift performance.

  • S. Saravanan , K. Raghukandan , Prabhat Kumar

    Explosive cladding of Al 5052-Al 1100 plate, interfaced with a stainless steel wire mesh interlayer, is attempted. Loading ratio and standoff distance were varied. An increase in loading ratio (R) and standoff distance (S) enhances the plate velocity (Vp), dynamic bend angle (β) and pressure developed (P). The interface morphology of the explosive clads confirms strong metallurgical bond between the wire mesh and aluminum plates. Further, a smooth transition from straight to undulating interlayered topography is witnessed. The introduction of a wire mesh, as interlayer, leads to an improvement in mechanical strength with a slender reduction in overall corrosion resistance of the “explosive clads”.

  • Pai Wang , Yang-bo Li , Mei Wang , Xue-bin Qin , Lang Liu

    The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.

  • Guo Li , Jian-ming Gong , Jin-zhu Tan , Da-sheng Zhu , Wen-hua Jia

    Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubber samples is studied under different temperatures and simulated operating conditions. The results show that the stress relaxes exponentially with time at 25% strain level, especially at higher temperature or with higher acid concentration solution. The three-term Prony series can simulate the viscoelastic behavior well, and the Master curves are established by applying a time-temperature superposition method to estimate the life of the samples. It can save approximately 50% and 78% of the test time when an operating temperature and acid solution are chosen appropriately.

  • Hai-tao Song , Tao Zhang

    A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.

  • Jing-wei Hou , Ke-li Jia , Xue-jun Jiao

    Teaching evaluation on a WebGIS course is a multi-objective nonlinear high-dimensional NP-hard problem. The index system for the teaching evaluation of a WebGIS course, including teacher- and student-oriented sub-systems, is first established and used for questionnaires from 2013 to 2017. The multi-objective nonlinear high-dimensional evaluation model is constructed and then solved via dynamic self-adaptive teaching-learning-based optimization (DSATLBO). DSATLBO is based on teaching-learning-based optimization with five improvements: dynamic nonlinear self-adaptive teaching factor, extracurricular tutorship factor, dynamic self-adaptive learning factor, multi-way learning factor, and non-dominated sorting factor. WebGIS teaching performance is fully evaluated based on questionnaires and DSATLBO. Optimal weights and weighted scores from DSATLBO are compared with those from the non-dominated sorting genetic algorithm-II using the Pareto front, coverage to two sets, and spacing of the non-dominated solution sets to validate the performance of DSATLBO. The results show that DSATLBO can be uniformly distributed along the Pareto front. Therefore, DSATLBO can efficiently and feasibly solve the multi-objective nonlinear high-dimensional teaching evaluation model of a WebGIS course. The proposed teaching evaluation method can help reflecting the quality of all aspects of classroom teaching and guide the professional development of students.

  • Meng Li , Shi-lei Li , Yuan-zheng Ge

    Based on trajectory planning with maximum velocity and acceleration constraints, a novel high-quality trajectory planning method was proposed for heterogeneous individuals in crowd simulation. The proposed method ensured that the individual’s path was smooth and its velocity was continuous. Based on the physiological constraints of humans with maximum velocity and acceleration, time-optimal trajectory and feasible region were derived by solving kinodynamic planning problem. Subsequently, a high-quality trajectory planning algorithm was designed to compute the trajectory with appropriate variation of velocity. The simulation results demonstrate that the proposed trajectory planning method has more authenticities and can generate high-quality trajectories for virtual humans in crowd simulation.

  • Esmail Sadeghian , Sina Toosi

    Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates’ strength. Tsai-Hill failure criterion as a limiting state function to analyze structural reliability of a composite laminate and estimation theory in order to estimate statistical parameters of effective stress were utilized to construct probability box. Finally, we used the Monte Carlo simulation and FERUM software to calculate the upper and lower bounds of probability of failure.

  • D. V. A. N. Ravi Kumar , S. Koteswara Rao , K. Padma Raju

    A novel estimation algorithm is introduced to handle the popular undersea problem called torpedo tracking with angle-only measurements with a better approach compared to the existing filters. The new algorithm produces a better estimate from the outputs produced by the traditional nonlinear approaches with the assistance of simple noise minimizers like maximum likelihood filter or any other algorithm which belongs to their family. The introduced method is extended to the higher version in two ways. The first approach extracts a better estimate and covariance by enhancing the count of the intermediate filters, while the second approach accepts more inputs so as to attain improved performance without enhancement of the intermediate filter count. The ideal choice of the placement of towed array sensors to improve the performance of the proposed method further is suggested as the one where the line of sight and the towed array are perpendicular. The results could get even better by moving the ownship in the direction of reducing range. All the results are verified in the MATLAB environment.

  • Dan-gui Hu , Hong Shu

    In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.

  • Xiao Liao , Zhen-liang Wang , Chang-yu Fan , Chang-qing Yu , Zhu-yu Yu

    Maintaining caprock integrity is prerequisite for hydrocarbon accumulation. And gypsolyte caprock integrity is mainly affected by fracturing. Composition, damage behavior and mechanical strength of Paleocene Artashi Formation gypsolyte rock that seals significant petroleum in the Kashi Sag of Tarim Basin had been revealed via X-ray diffraction and triaxial compression test. The results indicate the Artashi Formation can be lithologically divided into the lower and upper lithologic members. The lower member comprises gypsum as the dominant mineral, and the cohesion and friction coefficient are 8 MPa and 0.315, respectively. Similarly, the upper lithologic member consists mainly of anhydrite at the cohesion and coefficient of internal friction values of 18 MPa and 0.296. Given that the failure criterion and brittle-ductile transition factors during burial, the sealing integrity of Artashi Formation can be quantized for seven different stages. The reservoirs at the bottom of Artashi Formation caprock buried from 2285 m to 3301 m are expected to be the most favorable exploration target in the Kashi Sag.

  • Ai-xiang Wu , Zhu-en Ruan , Cui-ping Li , Shao-yong Wang , Yong Wang , Jian-dong Wang

    Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.

  • Bulent Tutmez

    As such in any industrial raw material site characterization study, making a lithological evaluation for cement raw materials includes a description of physical characteristics as well as grain size and chemical composition. For providing the cement components in accordance with the specifications required, making the classification of the cement raw material pit is needed. To make this identification in a spatial system at a quarry stage, the supervised pattern recognition analysis has been performed. By using four discriminant analysis algorithms, lithological classifications at three levels, which are with limestone, marly-limestone (calcareous marl) and marl, have been made based on the main chemical components such as calcium oxide (CaO), alumina (Al2O3), silica (SiO2), and iron (Fe2O3). The results show that discriminant algorithms can be used as strong classifiers in cement quarry identification. It has also recorded that the conditional and mixed classifiers perform better than the conventional discriminant algorithms.

  • Lian-sheng Tang , Zhan-lun Zhao , Hao-kun Chen , Yan-ping Wu , Yu-chao Zeng

    The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model.

  • Kai-di Li , Chun-yang Chen , Te-fang Chen , Shu Cheng , Xun Wu , Chao-qun Xiang

    Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.

  • Hui Wei , Xian-ping Bai , Fei-yue Wang , Wei Li , Jiao Jin

    In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting strength, stability and water stability test; the design of the experiment involved changing gyration number, emulsified asphalt and water content, molded specimen temperature and other factors to analyze the volume parameters, mechanical properties and water stability. The results show that both the maximum dry density and dry and wet splitting strength ratio(DWSSR) of emulsified asphalt cold reclaimed mixture are improved by the rotary compacting method, while the porosity and the optimal dosage of water are reduced. Furthermore, with the increase of compaction times, the porosity and splitting strength index both change exponentially. DWSSR and porosity are consistent with quadratic functions. The use of gyratory compaction for 70 times at 25 °C and the optimum dosage of emulsified asphalt can be determined based on the splitting strength ratio. The high-temperature stability and water damage resistance of the pavement can be improved by the use of rotary compacting method effectively, and the early strength and road performance are higher than the regulatory requirements.

  • Abolfazl Abdollahipour , Hamid Soltanian , Yaser Pourmazaheri , Ezzatollah Kazemzadeh , Mohammad Fatehi-Marji

    Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived.