Super long-range diffusion of carbon during proeutectoid ferrite transformation

Suo-quan Zhang , Si-hai Jiao , Jian-hua Ding , Di Wan , Zhen-yu Liu , Guo-dong Wang

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (3) : 560 -566.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (3) : 560 -566. DOI: 10.1007/s11771-019-4027-5
Article

Super long-range diffusion of carbon during proeutectoid ferrite transformation

Author information +
History +
PDF

Abstract

In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 µm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 µm/s.

Keywords

low carbon steel / local transformation / super long-rang diffusion / interface-controlled mode

Cite this article

Download citation ▾
Suo-quan Zhang, Si-hai Jiao, Jian-hua Ding, Di Wan, Zhen-yu Liu, Guo-dong Wang. Super long-range diffusion of carbon during proeutectoid ferrite transformation. Journal of Central South University, 2019, 26(3): 560-566 DOI:10.1007/s11771-019-4027-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ÅgrenJ. Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels [J]. Acta Metallurgica, 1982, 30(4): 841-851

[2]

ÅgrenJ. A revised expression for the diffusivity of carbon in binary Fe-C austenite [J]. Scripta Metallurgica, 1986, 20(11): 1507-1510

[3]

JiangD, CarterE A. Carbon dissolution and diffusion in ferrite and austenite from first principles [J]. Physical Review B, 2003, 67(21): 214103

[4]

XiaC-q, JinZ-peng. Examination of carbon diffusion in niobium clad steel composite [J]. Journal of Central South University of Technology, 1999, 611-3

[5]

ZhangX, TangJ-y, ZhangX-rui. An optimized hardness model for carburizing-quenching of low carbon alloy steel [J]. Journal of Central South University, 2017, 24(1): 9-16

[6]

LiuZ K. Theoretic calculation of ferrite growth in supersaturated austenite in Fe-C alloy [J]. Acta Materialia, 1996, 44(9): 3855-3867

[7]

BhadeshiaH, SvenssonL E, GretoftB. A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits [J]. Acta Metallurgical, 1985, 33(7): 1271-1283

[8]

EnomotoM. Prediction of TTT-diagram of proeutectoid ferrite reaction in iron-alloys from diffusion growth theory [J]. ISIJ International, 1992, 32(3): 297-305

[9]

ReedR, BhadeshiaH. Kinetics of reconstructive austenite to ferrite transformation in low alloy steels [J]. Materials Science and Technology, 1992, 8(5): 421-436

[10]

VandermeerR. Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-C alloys [J]. Acta Metallurgica et Materialia, 1990, 38(12): 2461-2470

[11]

YeJ-s, ChangH-b, HsuT. Modeling for formation of proeutectoid ferrite in steel during continuous cooling [J]. Journal of Iron and Steel Research International, 2004, 11(6): 33-36

[12]

ZenerC. Theory of growth of spherical precipitates from solid solution [J]. Journal of Applied Physics, 1949, 20(10): 950-953

[13]

ChristianJ WThe theory of transformations in metals and alloys [M], 2002, Oxford, Pergamon: 422479

[14]

NolfiF V, ShewmonP G, FosterJ S. Dissolution and growth kinetics of spherical precipitates [J]. Transactions of the Metallurgical Society of AIME, 1969, 245(7): 1427-1433

[15]

KrielaartG, van der ZwaagS. Simulations of pro-eutectoid ferrite formation using a mixed control growth model [J]. Materials Science and Engineering A, 1998, 246(12): 104-116

[16]

KrielaartG P, SietsmaJ, van der ZwaagS. Ferrite formation in Fe-C alloys during austenite decomposition under nonequilibrium interface conditions [J]. Materials Science and Engineering A, 1997, 237(2): 216-223

[17]

KopT, van LeeuwenY, SietsmaJ, van der ZwaagS. Modelling the austenite to ferrite phase transformation in low carbon steels in terms of the interface mobility [J]. ISIJ International, 2000, 40(7): 713-718

[18]

van LeeuwenY, KopT, SietsmaJ, van der ZwaagS. Phase transformations in low-carbon steels; modelling the kinetics in terms of the interface mobility [C]. 3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids: Experiments, Modelling, Applications, 1999401409

[19]

van LeeuwenY, SietsmaJ, van der ZwaagS. The influence of carbon diffusion on the character of the gamma-alpha phase transformation in steel [J]. ISIJ International, 2003, 43(5): 767-773

[20]

van LeeuwenY, VooijsS, SietsmaJ, van der ZwaagS. The effect of geometrical assumptions in modeling solid-state transformation kinetics [J]. Metallurgical and Materials Transactions A, 1998, 29(12): 2925-2931

[21]

SietsmaJ, van der ZwaagS. A concise model for mixed-mode phase transformations in the solid state [J]. Acta Materialia, 2004, 52(14): 4143-4152

[22]

WuR-h, RuanX-y, ZhangH-b, HsuT Y. A mixed-controll mechanism model of proeutectoid ferrite growth under non-equilibrium interface condition in Fe-C alloys [J]. Journal of Materials Science & Technology, 2004, 20(5): 561-566

[23]

OninkM, TichelaarF, BrakmanC, MittemeijerE, van der ZwaagS. An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites [J]. Journal of Materials Science, 1995, 30(24): 6223-6234

[24]

MosayebidorchehS, Rahimi-gorjiM, GanjiD D, MoayebidorchehT, PourmehranO, BiglarianM. Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM [J]. Journal of Central South University, 2017, 24(3): 675-682

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/