2025-04-26 2017, Volume 24 Issue 6

  • Select all
  • Ke Liang

    Efficient bolted joint design is an essential part of designing the minimum weight aerospace structures, since structural failures usually occur at connections and interface. A comprehensive numerical study of three-dimensional (3D) stress variations is prohibitively expensive for a large-scale structure where hundreds of bolts can be present. In this work, the hybrid composite-to-metal bolted connections used in the upper stage of European Ariane 5ME rocket are analyzed using the global-local finite element (FE) approach which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. We calculate the Tsai-Wu failure index and the margin of safety using the stresses obtained from ABAQUS. We find that the composite part of a hybrid bolted connection is prone to failure compared to the metal part. We determine the bolt preload based on the clamp-up load calculated using a maximum preload to make the composite part safe. We conclude that the unsuitable bolt preload may cause the failure of the composite part due to the high stress concentration in the vicinity of the bolt. The global-local analysis provides an efficient computational tool for enhancing 3D stress analysis in the highly loaded region.

  • Kumar Subindu , Kumari Amrita , Das Mukul K

    Growing a silicon (Si) layer on top of stacked Si-germanium (Ge) compressive layer can introduce a tensile strain on the former, resulting in superior device characteristics. Such a structure can be used for high performance complementary metal-oxide-semiconductor (CMOS) circuits. Down scaling metal-oxide-semiconductor field-effect transistors (MOSFETs) into the deep submicron/nanometer regime forces the source (S) and drain (D) series resistance to become comparable with the channel resistance and thus it cannot be neglected. Owing to the persisting technological importance of strained Si devices, in this work, we propose a multi-iterative technique for evaluating the performance of strained-Si/strained-Si1-yGey/relaxed-Si1-xGex MOSFETs and its related circuits in the presence of S/D series resistance, leading to the development of a simulator that can faithfully plot the performance of the device and related digital circuits. The impact of strain on device/circuit performance is also investigated with emphasis on metal gate and high-k dielectric materials.

  • Saravanan Somasundaram , Raghukandan Krishnamurthy , Hokamoto Kazuyuki

    The present work pertains to the study of microstructure and mechanical properties of explosively cladded commercially pure titanium (cpTi) with austenitic stainless steel (SS 304L) subjected to varied process parameters, viz., loading ratios (mass of explosive or mass of flyer plate) and preset angles. The microstructural study reveals the transformation from straight to wavy interface while increasing loading ratios. Vickers hardness increases with loading ratios, and the maximum hardness is witnessed in the closer proximity of collision interface. Ram tensile and shear strength of explosive claddings are higher than that of parent plates. While the base plate fails in impact test, the flyer plate is deformed, indicating good impact strength. Increased mass of claddings, due to oxide formation, is witnessed in corrosion tests, which confirms the superiority of explosive claddings in corrosive environment. Triaxial weldability window, an analytical estimation for Ti−SS 304L explosive claddings, is developed and correlated.

  • Dao-long Yang , Jian-ping Li , Chang-long Du , Ke-hong Zheng , Song-yong Liu

    Based on the separation and backfilling system of coal and gangue, the mineral material impact experiments were conducted utilizing the hardness difference between coal and gangue according to the uniaxial compression experiments. The broken coal and gangue particles were collected and screened by different size meshes. The particle size distributions of coal and gangue under different impact velocities were researched according to the Rosin-Rammler distribution. The relationships between separation indicators and impact velocities were discussed. It is found from experiments that there is a fully broken boundary of coal material. The experimental results indicate that the Rosin-Rammler distribution could accurately describe the particle size distribution of broken coal and gangue under different impact velocities, and there is a minimum overlap region when the impact velocity is 12.10 m/s which leads to the minimum mixed degree of coal and gangue, and consequently the benefit of coal and gangue separation.

  • Zhong-xiang Gui , Xiao Hu , Zi-jian Wang

    An elasto-visco-plastic constitutive model incorporating the craze damage behavior was developed for the polypropylene (PP), by using the plastic failure model applied for the concrete, to capture the craze yielding and stress-whitening phenomena. In addition, the developed constitutive model was implemented into finite element codes in Abaqus to simulate the tensile deformation. The standard uniaxial tensile tests were carried out. The stress−strain curves from the uniaxial tensile tests show that the stress keeps decreasing after yielding and the yield stress rises with the increasing of the strain rate. It is worth noting that the craze damage is more visible with higher strain rate. The stress-whitening can be seen clearly around the fracture. The uniaxial tensile tests using specially designed specimen with circular holes weakening were performed for the validation of the developed model. The simulation results of the tensile deformation of the hole-weakened specimen suggest that the stress-whitening could be attributed to the equivalent visco-plastic strain. By comparing between the simulation analysis and the experimental results, the proposed model can describe the stress whitening phenomenon with good accuracy.

  • Long-gang Ye , Yu-jie Hu , Zhi-mei Xia , Chao-bo Tang , Yong-ming Chen , Mo-tang Tang

    The solution behavior, including solubility, reactivity and sedimentation, of ZnO and ZnS in a Na2CO3−NaCl molten salt used for Sb smelting was investigated in the temperature range of 700-1000 ºC. The saturated amount of dissolved ZnO in the molten salt remained constant at 0.02% and was unaffected by temperature; additionally, ZnO did not react with the molten salt. In contrast, the saturated amount of dissolved ZnS in the eutectic molten salt increased with increasing temperature, and the content of ZnS was 0.53% at 1000 ºC. In addition, ZnS reacted with Na2CO3 above 900 ºC to give ZnO. The sedimentation rates of these three species in the molten salt followed the order of Sb>ZnS>ZnO. It was thus concluded that ZnO is an appropriate sulfur-fixing agent for low-temperature Sb smelting in a Na2CO3−NaCl molten medium, and that the optimal smelting temperature is below 900 ºC.

  • Hai-xia Tong , Xiong Tian , Dao-xin Wu , Cheng-feng Wang , Qiao-li Zhang , Zhao-hui Jiang

    Electrospun WO3 nanofibers were fabricated by coaxial electrospinning and directly annealing WCl6/polyvinylpyrrolidone (PVP) nanofibers on activated carbon fibres (ACF), and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The most suitable condition for electrospinning is the mass ratio of WCl6 to PVP 0.6, appropriate amount DMF and ethanol, a voltage of 28 kV, the reception distance of 15 cm, the humidity range within 10% and 20% and the moving rate of the pump 0.001 mm/s. The photocatalytic activities of WO3 nanofibers were evaluated by the photo-degradation of phenol solution under the irradiation of 500 W xenon lamp. The results showed that, the sizes of the fibers are about 100 nm, and after being photodegraded for 210 min, the concentration of phenol decreased from 20.05 mg/L to 8.60 mg/L. Thus, the photo-degradation rate of WO3 nanofibers for phenol solution is 2.87 mg/(L·h).

  • Xiao-xian Zhao , Xiao-lei Fan , Zhi-xin Xue , Zhi-man Yang , Xian-zheng Yuan , Yan-ling Qiu , Rong-bo Guo

    The Macrocystis pyrifera biomass residues (MPBRs) after extraction of algin could be applied in anaerobic fermentation. The effects of different pretreatment conditions, substrate concentrations and initial pH values on hydrogen and volatile fatty acid (VFA) production during the anaerobic fermentation of MPBRs were evaluated. The optimal pretreatment conditions, substrate concentration, initial pH values were determined as thermo-alkaline pretreatment at 100 °C with 0.1 mol/L NaOH, 40 g/L and 7.0, respectively. Under these conditions, the maximum hydrogen production was 11.38 mL/g (volatile solids, VS), which was approximately 23 times higher than that of untreated MPBRs. Furthermore, the maximum total volatile fatty acid (TVFA) yield was found to be 0.055 g/g (VS) and the VFA mainly consisted of acetic and butyric acids. The results indicate that the yield of TVFA is positively correlated with hydrogen production, and the MPBRs could produce hydrogen and TVFA simultaneously. In addition, thermo-alkaline pretreatment is proven to be the best method for hydrogen and VFA production.

  • Ming Zhao , Chang Xiao , Ping-fang Zhou , Deng-ping Duan

    A new concept stratospheric aerostat is investigated which consists of a saucer-shaped hull, multi-vectored thrusters, and an under-slung nacelle. The design of this aerostat involves tradeoffs between conventional airship and high altitude balloon. The sling connection simplifies structure design significantly, but brings challenges for dynamics analysis. Dynamics modeling for this aerostat is a kind of double-body problem with geometric constraint. Nonlinear dynamics model is established by considering the effects of under-slung nacelle. Oscillation behavior of this double-body system is superposed by a long-period oscillation of the hull and a short-period oscillation of the nacelle. The length of sling only influences the short-period oscillation but the mass ratio of nacelle to main body determines the stability of system. Finally, an envelope about mass ratio and maximal open loop forward thrust as well as speed is presented, where the system is stable.

  • Zhao-yu Shou , Meng-ya Li , Si-min Li

    Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density (ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.

  • Shuai Li , Jian Li , Si-qi Li , Zong-lin Huang

    In order to guarantee safety and stability during physical human-robot-interaction (pHRI) in the occasion of service or industrial operation, a serial integrated rotary joint with the characteristics of passive and active compliance is proposed. Passive compliance is achieved by a designed elastic element, such that the compliant joint may minimize large force which occurs during accidental impacts and, further, may offer more accurate and stable force control and a capacity for energy storage. Meanwhile, the modeling of the compliant joint is comprehensively analyzed, including the effect of the motor model on the overall control system. In order to realize the active compliance, a new method of impedance control is proposed. On the basis of PD control, a more compliant impedance controller is introduced. Experimental results show that the serial integrated rotary joint can provide more effective safety compliance during physical interaction, which has also been well applied in our designed massage robot and rehabilitation robot.

  • Arun Agarwal , Saurabh N. Mehta

    This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (QAM)-16 and QAM-64 with four error correction codes (convolutional code (CC), Reed-Solomon code (RSC)+CC, low density parity check (LDPC)+CC, Turbo+CC) is studied under three channel models (additive white Guassian noise (AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate (BER) and the peak signal to noise ratio (PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.

  • Xing-chao Wang , Jian-ming Hu , Wei Liang , Yi Zhang

    Short-term travel flow prediction has been the core of the intelligent transport systems (ITS). An advanced method based on fuzzy C-means (FCM) and extreme learning machine (ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function, this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms.

  • J. Marzbanrad , M. Shahsavar , B. Beyranvand

    A mass-spring-damper linear oscillator with a limiting stop barrier is presented. Modeling non-smooth processes in mechanical engineering is a complex problem. It is especially for the systems with more than a single degree of freedom. But recent studies in dynamical systems have been applied to single degree of freedom systems. The vibrating system, consisting of an oscillator with amplitude of motion limited by a barrier, is known as a vibro-impact system. The amount of force and kinetic energy transferred to a barrier has an important application in designing of engineering systems that undergo the vibro-impact phenomenon. The results show the effect of changing restitution coefficient of a barrier on the amount of force and energy absorbed.

  • Cheng-li Zhu , Yan-zhong Wang , Liang-wei Hou

    AC motors, especially the squirrel cage induction motors have the advantages of simple structure, good reliability and low cost. They are more suitable to be used as electrical dynamometers to provide dynamic load for bench test systems. But, the speed and torque of induction motors are not easy to be controlled accurately. In this work, an electrical dynamometer based on the induction motor is proposed. In order to get better control performance of torque and speed of induction motor, an improved direct torque control method (DTC) is also developed based on the space vector modulation (SVM) technique. The performance of the proposed dynamometer system is validated in the Matlab/Simulink platform. The simulation results show that the new dynamometer has good torque and stator flux response. And the torque and stator current ripples of it are reduced significantly compared with using the conventional DTC method.

  • Fang-chen Yin , Jie Sun , Wen Peng , Hong-yu Wang , Jing Yang , Dian-hua Zhang

    Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control (DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.

  • Yun-qing Gu , Tian-xing Fan , Jie-gang Mou , Deng-hao Wu , Shui-hua Zheng , Evan Wang

    This work primarily focuses on the drag reduction characteristics and mechanism investigation of oblique riblets. First, a calculation model of the oblique riblets surface is established, and Reynolds stress model (RSM) turbulence model is used for numerical simulation of the oblique riblets flow field. Subsequently, the influence of inclination angle between flow direction and arrangement direction of riblets on friction resistance and drag reduction rate is further analyzed. Through the investigation of the distribution of shear stress, pressure stress and velocity in oblique riblets boundary layer, the oblique riblets drag reduction mechanism is finally revealed. Results show that, with increase of velocity and inclination angle, the pressure resistance increases obviously, along with the decreasing of the viscous resistance distinctly. The maximum drag reduction rate of the oblique riblets is 7.33%. Moreover, when the inclination angle increases, the wall shear stress reduces on oblique riblets surface; while differential pressure increases at both sides of oblique riblets tips. In addition, when inclination angle is small, the secondary vortex at oblique riblets tips will disappear soon. New vortices will be formed inside the oblique riblets and cause the decrease of viscosity resistance. Thus, oblique riblets show a better drag reduction effect and have an effective control on boundary layer.

  • Xu Zhu , Xun-xun Zhang , Mao-de Yan , Yao-hong Qu

    Consensus is an emerging technique using neighbor-to-neighbor interaction to generate steering commands for cooperative control of multiple vehicles. A three-dimensional formation keeping strategy for multiple unmanned aerial vehicles (multi-UAV) is proposed based on consensus, aiming at maintaining a specified geometric configuration. A formation control algorithm with guidance and corresponding flight controllers is given, managing position and attitude, respectively. In order to follow a three-dimensional predefined flight path, by introducing the tracking orders as reference states into the consensus, the formation control algorithm is designed, following the predefined flight path and maintaining geometric configuration simultaneously. The flight controllers are constructed by nonlinear dynamic inverse, including attitude design and velocity design. With the whole system composed of a nonlinear six-degree-of-freedom UAV model, the formation control algorithm and the flight controllers, the formation keeping strategy is closed loop and with full states. In simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the proposed strategy.

  • A. Etesaminia , A. H. Mazinan

    The JPEG2000 image compression standard is the powerful encoder which can provide phenomenal rate-control performance. The post-compression rate-distortion (PCRD) algorithm in JPEG2000 is not efficient. It requires encoding all coding passes even though a large contribution of them will not be contained in the final code-stream. Tier-1 encoding in the JPEG2000 standard takes a significant amount of memory and coding time. In this work, a low-complexity rate distortion method for JPEG2000 is proposed. It is relied on a reverse order for the resolution levels and the coding passes. The proposed algorithm encodes only the coding passes contained in the final code-stream and it does not need any post compression rate control part. The computational complexity of proposed algorithm is negligible, making it suitable to compression and attaining a significant performance. Simulations results show that the proposed algorithm obtained the PSNR values are comparable with the optimal PCRD.

  • Guo-jun Niu , Bo Pan , Fu-hai Zhang , Hai-bo Feng , Yi-li Fu

    In order to obtain the remote center motion (RCM) mechanism with better performance indexes and avoid the collision of multi-manipulators in minimally invasive surgery (MIS), a novel multi-objective optimization model was presented. There were two optimization objectives: a global kinematic performance index and a comprehensive stiffness index. Other indexes to characterize the design requirements such as collision probability, workspace, mechanism parameter, mass, and wall thickness were considered as constraints. Angles between two adjacent joints and cross-section dimensions of links were chosen as the design variables. The non-dominated sorting genetic algorithm II (NSGA-II) was adopted to solve the complex multi-objective optimization problem. Then, a 3-degree of freedom (DoF) MIS robotic prototype based on optimization results has been built up. The experiments to test the spatial position change of the remote center point and to test the absolute position accuracy and repetitive position accuracy of the MIS robot were achieved, and the experimental results meet the requirements of MIS.

  • Jun-jian Li , Chun-ming Xiong , Ying-rui Bai , Ru-yi Jiang , Fa-lin Wei , Miao Zhang

    During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium (Cr3+) gel system to explore the leak-off behavior and the water shut-off performance of gel in fractured media. Results of the gelant leak-off study show that the gelant leak-off from fracture into matrix contributes to the formation of the gelant leak-off layer during the gelant injection. Moreover, because of the gradual formation of the gelant leak-off layer along fracture, the initial leak-off ratio of gelant is relatively high, but it declines and finally levels off with the increase of the injection volume. The polymer concentration of gelant has a great effect on the chromium output in fluids produced from fractures. With the increase of the polymer concentration, the chromium concentration first decreases and then increases, and the leak-off depth of gelant into matrix is gradually reduced. Results of the water shut-off study present that the decrease of the chromium concentration inside the fracture greatly reduces the water shut-off performance after the gel formation. Therefore, because of the relatively high degree of chromium leak-off, enough injection volume of gelant is essential to ensure the sufficient chromium concentration inside the fracture and to further achieve a favorable water shut-off performance. On the premise of gel strength assurance inside the fracture, the water shut-off performance of gel gradually declines with the extension of the distance from the fracture inlet, and different leak-off degrees of gelant along the fracture are responsible for this phenomenon. Therefore, a proper degree of gelant leak-off contributes to enhancing the water shut-off performance of gel for fractures.

  • Kun-yong Zhang , Frederick Nai Charkley

    Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.

  • He-hui Zhang , Sheng-xiang Deng , Ying-jie Qu

    The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed for the comparison study of different flow structures. The full steady flow fields of an industrial centrifugal pump working on-design and off-design points were numerically investigated by solving Reynolds average Navier-Stokes equations together with a shear−stress transport (SST) k−ω turbulence model. And the numerically predicted performance curves of the studied pump agree well with test measurement results. Compared with the flow flied on design point under the help of differential amplification method, the disturbance caused by interaction between blade and volute tongue is very obvious and it extends to the diffuser pipe on the working point with 0.8 times rated flux. While on the point with 1.2 times rated flux, the flow distribution in impeller region is roughly even and it flows more to the bottom section of the diffuser pipe. The above method was proved to be good at displaying the subtle secondary flow structure changes with a higher resolution effect relative to single isolated case observation, which helps the optimization decision-making from multiple design cases.

  • Shan-ming Zhang , Bo Liu , Shan Qin , Xue-feng Zhang , Yong-jing Tian , Rong-tao Guo , Jian-qiang Liu

    In situ Raman analysis on the segregated near-equilibrium carbonate-fluid interaction at elevated temperatures (room temperature−260 °C) and pressures (13-812 MPa) in a hydrothermal diamond anvil cell (HDAC) reveals the preservation mechanism of porosity in deep carbonate reservoirs in the northeastern Sichuan Basin. The carbonate-fluid interaction was investigated by separately heating carbonate minerals and rocks with four different acid solutions (saturated CO2 and H2S solutions, HCl, CH3COOH) in a sealed sample chamber. A minor continuous precipitation with increasing temperatures and pressures was observed during the experiments which caused minor sample volume change. The closed system is a preservation of pores and burial dissolution may not be the dominant diagenesis in the origin of porosity. Thin section photomicrographs observations in Changxing and Feixianguan Formations demonstrate that eogenetic pores such as moldic or intragranular pores with late small euhedral minerals, intergranular, intercrystal and biological cavity pores are the main pore types for the reservoirs. Early fast deep burial makes the porous carbonate sediments get into the closed system as soon as possible and preserves the pores created in the early diagenetic stage to make significant contribution to the deep reservoir quality. The anomalous high porosity at a given depth may come from the inheritance of primary pores and eogenetic porosity is fundamental to carbonate reservoir development. The favorable factors for deep reservoir origin include durable meteoric leaching, early fast deep burial, early dolomitization, etc. This deep pores preservation mechanism may be of great importance to the further exploration in deep carbonate reservoirs in the northeastern Sichuan Basin.

  • Xi-sai Zhou , Tang-hong Liu , Zheng-wei Chen , Xiang Zou , Dong-run Liu

    Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is −10 m/s and −30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.

  • Xue-mei Chen , Min Jin , Yi-song Miao , Qiang Zhang

    The decision-making under complex urban environment become one of the key issues that restricts the rapid development of the autonomous vehicles. The difficulty in making timely and accurate decisions like human beings under highly dynamic traffic environment is a major challenge for autonomous driving. Car-following has been regarded as the simplest but essential driving behavior among driving tasks and has received extensive attention from researchers around the world. This work addresses this problem and proposes a novel method RSAN (rough-set artificial neural network) to learn the decisions from excellent human drivers. A virtual urban traffic environment was built by PreScan and driving simulation was conducted to obtain a broad set of relevant data such as experienced drivers’ behavior data and surrounding vehicles’ motion data. Then, rough set was used to preprocess these data to extract the key influential factors on decision and reduce the impact of uncertain data and noise data. And the car-following decision was learned by neural network in which key factor was the input and acceleration was the output. The result shows the better convergence speed and the better decision accuracy of RSAN than ANN. Findings of this work contributes to the empirical understanding of driver’s decision-making process and it provides a theoretical basis for the study of car-following decision-making under complex and dynamic environment.

  • Xue-feng Li , Shou-ji Du , Bing Chen

    A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory (UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed.

  • Yang Li , Jian-qiang Wang , Jian Wu

    Driving safety field (DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver’s hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.

  • Yan-jie Ji , Liang-peng Gao , Xiao-shi Chen , Wei-hong Guo

    A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform (WT), artificial neural network (ANN) and forecasting strategies based on the changing characteristics of available parking spaces (APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output (MIMO) strategy, DIRMO strategy (a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output (RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.

  • Pei Liu , Jian Zhang , Jun-rong Qu , Jia-jian Lu , Yang Cheng , Hua-chun Tan

    This work correlated the detailed work zone location and time data from the WisLCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov (K-S) test were applied to compare the speed and flow characteristics between work zone and non-work zone conditions. Furthermore, we analyzed the mobility characteristics of freeway work zones within the urban area of Milwaukee, WI, USA. More than 50% of investigated work zones have experienced speed reduction and 15%−30% is necessary reduced volumes. Speed reduction was more significant within and at the downstream of work zones than at the upstream.

  • Shuo Wang , Zhen-hua Hu

    Combined with the actual situation of the western region city of Zunyi, the three subsystems including social, economic and natural environment evaluation index systems of ECC have been built based on the theory of ecological carrying capacity (ECC). In addition, the factor analysis method has been used and the influence factors on the ECC in the economic transition have been gained. The results show that factors of ECC in the three subsystems have different influence: 1) the natural subsystem, which contains factors on the ECC, has obvious limitation, and it has the greatest influence on industrial waste discharge per capita; 2) the social subsystem has a restriction on the ECC, which affects the traffic environment mostly; 3) the economic subsystem has a certain restriction on ECC, which has a large effect on the consumption level per capita.