2025-04-25 2016, Volume 23 Issue 8

  • Select all
  • Xian Leng , Ru-tie Liu , Jian-peng Zou , Xiang Xiong , Han-wei He

    Reduced graphene oxide (RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with large d spacing (0.852 nm) of graphene oxide (GO), the (002) plane distance decreases to 0.358-0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. The ID/IG ratio of RGOs is about 1.0-1.15, indicating that reconstructed sp2 domains have smaller sizes and larger quantity. The content of sp2 bonded C in GO (36.93%, molar fraction) increases to 45.48%-72.92% (molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.

  • Guo-ji Zhao , Guang-hua Wen , Guang-min Sheng , Yan-xia Jing

    Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd (mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.

  • Seyyed Mostafa Tahsini , Ayyub Halvaee , Hamed Khosravi

    Similar friction welded joints of AA-7005 aluminum rods were fabricated using different combinations of process parameters such as friction pressure (1.0, 1.5 and 2.0 MPa) and friction time (10, 15 and 20 s). Interfacial microstructure and formation of intermetallic compounds at the joint interface were evaluated via scanning electron microscopy (SEM) equipped with energy dispersive spectrum (EDS), and optical microscopy (OM). Microstructural observations reveal the formation of intermetallic phases during the welding process which cannot be extruded from the interface. Theses phases influence the tensile strength of the resultant joints. From the tensile characteristics viewpoint, the greatest tensile strength value of 365 MPa is obtained at 1.5 MPa and 15 s. Finally, the role of microstructural features on tensile strength of resultant joints is discussed.

  • D. Vijayan , V. Seshagiri Rao

    A comparative approach was performed between the response surface method (RSM) and the adaptive neuro-fuzzy inference system (ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the tensile elongation, of friction stir welded age hardenable AA6061 and AA2024 aluminum alloys. The effects of the welding parameters, namely the tool rotational speed, welding speed, axial load and pin profile, on the ultimate tensile strength and the tensile elongation were analyzed using a three-level, four-factor Box-Behnken experimental design. The developed design was utilized to train the ANFIS models. The predictive capabilities of RSM and ANFIS were compared based on the root mean square error, the mean absolute error, and the correlation coefficient based on the obtained data set. The results demonstrate that the developed ANFIS models are more effective than the RSM model.

  • Song-yi Chen , Kang-hua Chen , Peng-xuan Dong , Sheng-ping Ye , Lan-ping Huang , Dai-jun Yang

    The influence of a novel three-step aging on strength, stress corrosion cracking (SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy (TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.

  • Meng-han Wang , Gen-tian Wang , Rui Wang

    The hot deformation behavior of 20MnNiMo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature (1223-1523 K) and strain rate (0.01-10 s-1). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook (JC) model and artificial neural network (ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient (R) and mean absolute relative error (AARE). The results indicate that the flow stress behavior of 20MnNiMo low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook (JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20MnNiMo low carbon alloy.

  • Jun-jie Li , Xuan Cheng , Ying Zhang , Wei-xiang Sun

    Strain-rate frequency superposition (SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.

  • Jun Luo , Guang-hui Li , Tao Jiang , Zhi-wei Peng , Ming-jun Rao , Yuan-bo Zhang

    A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. The process consists of three steps: 1) concentrating alumina from the coal gangue via activation roasting followed by alkali leaching of SiO2 which produces alumina concentrate for alumina extraction by the Bayer process; 2) synthesizing tobermorite whiskers from the filtrated alkali liquor containing silicate via a hydrothermal method and reusing excess caustic liquor; and 3) enriching titanium component from the Bayer process residue by sulfuric acid leaching. Alumina concentrate with 69.5% Al2O3 and mass ratio of alumina to silica (A/S) of 5.9, pure 1.1 nm tobermorite whisker and TiO2-rich material containing 33% TiO2 are produced, respectively, with the optimal parameters. Besides, the actual alumina digestion ratio of alumina concentrate reaches 80.4% at 270 ºC for 40 min in the Bayer process.

  • Hong-ming Long , Hong-tao Wang , Zhan-xia Di , Tie-jun Chun , Zheng-gen Liu

    It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N2-CO-H2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas (COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N2-CO-H2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.

  • He Yang , Yi Rong , Chong Han , Rong Tang , Xiang-xin Xue , Yong Li , Ying-nan Li

    Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and composition of rare-earth tailings were investigated. The results show that roast conditions with the temperature of 650 °C, carbon to oxygen ratio of 3.85, and holding time of 2.5 h are in favor of reduction of Fe2O3 to Fe3O4 when the roasted rare-earth tailings is cooled along with furnace. Under these roast conditions, magnetic susceptibility of rare-earth tailings is 2.36 that is very close to theoretical value (2.33). However, magnetic separation results of iron in rare-earth tailings cooled along with furnace are not satisfactory. Through comparing magnetic separation results of iron in rare-earth tailings cooled by different ways, it is found that water cooling is more favored of magnetic separation of iron in the roasted rare-earth tailings than furnace cooling and air cooling. Grade and recovery of iron in concentrate from rare-earth tailings cooled by water are 45.00%-49.00% and 65.00%-77.50%, respectively.

  • Yi-min Dai , Hui Liu , Lan-li Niu , Cong Chen , Xiao-qing Chen , You-nian Liu

    The quantitative structure-property relationship (QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential (E1/2) using quantum and physico-chemical molecular descriptors. The descriptors were calculated by semi-empirical calculations. Models were established using partial least square (PLS) regression and back-propagation artificial neural network (BP-ANN). The QSPR results indicate that the descriptors of these derivatives have significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set.

  • Zhen-xing Wang , Qing-wei Guo , Zhi-hui Yang , Guo-qing Sun , Wan-sheng Ye , Xi-bang Hu

    A land use- and geographical information system-based framework was presented for potential human health risk analysis using soil sampling data obtained in Zhuzhou City, Hunan Province, China. The results show that heavy metal content in soil significantly differs among different land use types. In total, 8.3% of the study area has a hazard index (HI) above the threshold of 1.0. High HIs are recorded mainly for industrial areas. Arsenic (>87%) and the soil ingestion pathway (about 76%) contribute most to the HI. The mean standardized error and root-mean-square standardized error data indicate that the land use-based simulation method provides more accurate estimates than the classic method, which applies only geostatistical analysis to entire study area and disregards land use information. The findings not only highlight the significance of industrial land use, arsenic and the soil ingestion exposure pathway, but also indicate that evaluating different land use-types can spatially identify areas of greater concern for human health and better identify health risks.

  • Yan-fei Ma , Yong-xia Li , S. H. Anderson , Xi-lai Zheng , Xue-dong Feng , Pei-ling Gao

    The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil infiltration through soils with time, with coefficients of determination greater than 0.99. Diesel oil infiltrates more quickly in the fine sand than in the silty clay loam material. Diesel oil infiltration rates are found to decrease with increasing initial water content and bulk density for the silty clay loam material. The infiltration rate of diesel oil in the fine sand material increases slightly with increasing initial water content. The diesel oil saturated conductivity (Kdiesel) decreases with increasing bulk density for the silty clay loam column. Diesel oil sorptivity(S) decreases linearly with increased initial water content and bulk density of the silty clay loam material. Changes in empirical parameters relative to initial water content and bulk density are similar to the parameter S.

  • Fu-jiang Dong , Feng-guo Liu , Xian-ting Li , Xue-yi You , Dong-fang Zhao

    In order to evaluate the heating performance of gas engine heat pump (GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed (1400-2600 r/min), ambient air temperature (2.4-17.8 °C) and condenser water inlet temperature (30-50 °C). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance (COP) and system primary energy ratio (PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 °C to 17.8 °C, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 °C to 50 °C. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.

  • Zhong-yu Wang , Wen-song Jiang , Yan-qing Wang

    The multi-objective genetic algorithm (MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balancing its model weight and multi-parametric distributions to the required accuracy. A novel measuring instrument of space manipulator is designed to orbital simulative motion and locational accuracy test. The camera system of space manipulator, calibrated by MOGA algorithm, is used to locational accuracy test in this measuring instrument. The experimental result shows that the absolute errors are [0.07, 1.75] mm for MOGA calibrating model, [2.88, 5.95] mm for MN method, and [1.19, 4.83] mm for LM method. Besides, the composite errors both of LM method and MN method are approximately seven times higher that of MOGA calibrating model. It is suggested that the MOGA calibrating model is superior both to LM method and MN method.

  • M. T. Ghorbani

    CIFER software is used to identify steering and roll dynamics of a container ship. In this software, advanced features such as the Chirp-Z transform (CZT) and composite window optimization are applied to the time history of steering and roll dynamics to extract high quality frequency responses. From the extracted frequency responses, two linear transfer functions of Nomoto model are fitted for yaw and roll dynamics of the vessel. Based on the identified Nomoto model, a PID heading controller and a Kalman filter observer are constructed. The simulation results of heading controller for line of sight (LOS) waypoint guidance show excellent tracking of pilot inputs in the presence of wave induced motions and forces.

  • Jin-hui Li , Jie Li , Pei-chang Yu

    This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.

  • Xin-peng Zhang , Niao-qing Hu , Lei Hu , Ling Chen

    The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals.

  • Lin Lang , Jian Wang , Qing Wei , Hong-xu Ma

    A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming (QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities (LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.

  • Xiao-le Guo , Kun-de Yang , Yang Shi , Rui Duan

    The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit (IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit (OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.

  • Chun-hui Zhao , Ming-hua Tian , Bin Qi , Yu-lei Wang

    A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With integration of both spatial and spectral information, this method quantitatively defines a variation index for every pixel. The variation index is proportional to pixels local entropy but inversely proportional to pixels kernel spatial attraction. The number of pixels removed was modulated by an artificial threshold factor a. Two real hyperspectral data sets were employed to examine the endmember extraction results. The reconstruction errors of preprocessing data as opposed to the result of original data were compared. The experimental results show that the number of distinct endmembers extracted has increased and the reconstruction error is greatly reduced. 100% is an optional value for the threshold factor a when dealing with no prior knowledge hyperspectral data.

  • Chun-yi Zhang , Lu-kai Song , Cheng-wei Fei , Guang-ping Hao , Ling-jun Liu

    To improve the computational efficiency of the reliability-based design optimization (RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method (PSO-AERSM) was proposed by integrating particle swarm optimization (PSO) algorithm and advanced extremum response surface method (AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.

  • Seyed Mohammad Hassan Hosseini , Mohammad Reza Semsar

    Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.

  • Mehrdad Sarafrazi , Armen Adamian

    Optimization of design features of reinforced sheet is investigated. Initially, equations governing composite structures are extracted based on Kirchhoff sheet model under bending using Hamilton’s principal. Then, design parameters for the composite structure are extracted with simple supportive boundary conditions from proposed solution. Next, optimization is achieved by determining dimensions of a reinforced sheet specimen. Weight optimization of reinforced sheet structure has been obtained based on variations in thickness and number of longitudinal and transverse reinforcements. Buckling static characteristic is utilized in optimization process. To solve the extracted equations, semi-analytical method of CS-DSG3 has been applied. Results are presented in graphs that show variation of design parameters by changing the geometric parameters. ABAQUS software has been used for design verification. The results show that an increase in thickness of 3 mm skip value tends to be zero. Also, there is a change in the amount of deflection for sheets with a minimum thickness of 3 mm by increasing the number of longitudinal and transverse reinforcement. There is a good agreement between the numerical method of finite elements and the method X-FEM-DSG3.

  • He Zuo , Guo-liang Tao

    A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller (CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control (ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation (RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov’s theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.

  • Li-ling Sun , Jing-tao Hu , Kun-yuan Hu , Mao-wei He , Han-ning Chen

    A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy (OMSPSO) is proposed, which enhances the global search ability of particles and increases their convergence rates. The numerical results on 10 benchmark functions demonstrated the effectiveness of our proposed algorithm. Then, the proposed algorithm is presented to design a butterfly-shaped microstrip patch antenna. Combined with the HFSS solver, a butterfly-shaped patch antenna with a bandwidth of about 40.1% is designed by using the proposed OMSPSO. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously for the high-speed wireless computer networks (5.15–5.35 GHz) and the RFID systems (5.8 GHz).

  • Bao-long Liu , Ya-bing Zha , Tao Zhang

    The solid state transformer (SST) can be viewed as an energy router in energy internet. This work presents sliding mode control (SMC) to improve dynamic state and steady state performance of a three-stage (rectifier stage, isolated stage and inverter stage) SST for energy internet. SMC with three-level hysteresis sliding functions is presented to control the input current of rectifier stage and output voltage of inverter stage to improve the robustness under external disturbance and parametric uncertainties and reduce the switching frequency. A modified feedback linearization technique using isolated stage simplified model is presented to achieve satisfactory regulation of output voltage of the isolated stage. The system is tested for steady state operation, reactive power control, dynamic load change and voltage sag simulations, respectively. The switching model of SST is implemented in Matlab/ Simulink to verify the SST control algorithms.

  • Jian-yang Zhu , Lin Jiang , Hui Zhao

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  • De-yuan Zhou , Ling-fei Liu , Li-meng Zhu

    A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars (SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.

  • Yu-feng Mao , Hao Li , Yan-lan He , Biao Yang , Ming-fei Wu

    Small tunnels such as engineering geological exploratory tunnels and mine roadways are generally narrow, which make the existing photographic geological logging technique inapplicable. Therefore, geological logging of exploratory tunnels has always been taking the method of manual sketch work which has low efficiency and poor informatization degree of products, and it is a technical issue requiring urgent settlement for geological logging of small tunnels. This paper proposes and studies novel methods of photographic geological logging suitable for small tunnels, including image acquisition, image orientation control, image geometric correction, unfolded image map generation and geological attitude measurement, etc. Experiments show that the method can meet the precision requirement of geological logging. The novel method helps to realize the fast acquisition and processing of image-based geological logging data for small tunnels, and the forms of logging result are more abundant and more applicable to informatized management and application of geological logging data.

  • Jia-ming Zhang , Ze-min Xu

    In order to investigate the differences of macropores vertical distribution under different surface plants, and to assess the influences of root systems, organic matter and texture on macropore flow paths, two dye tracer infiltration experiments were performed in slopes under two different plants (Campylotropis polyantha (Franch.) Schindl vs. Cynodon dactylon (Linn.) Pers). Dye tracer infiltration experiments with field observations and measurements of soil properties were combined. Results show that the discrepancy in macropores distribution between two slopes under different plants is significant. Root systems have significant effects on macropore flow paths distribution and the effect become more pronounced as the diameter of roots become larger. Organic matter and stone are important factors to affect macropores distribution. Root-soil interface, inter-aggregate macropore and stone-soil interface are important macropore flow paths in well vegetated slopes.

  • Zhong-qiu Fu , Bo-hai Ji , Wei Zhu , Han-bing Ge

    A lightweight aggregate concrete-filled steel tube (LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.

  • Jia-qiang E , Qing-song Zuo , Hai-li Liu , Yu Li , Jin-ke Gong

    Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter (DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive.

  • Fei-bo Jiang , Qian-wei Dai , Li Dong

    To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network (RBFNN) based on information criterion (IC) and particle swarm optimization (PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE’s information criterion (AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks (BPNNs) and traditional least square(LS) inversion.