2024-12-20 2024, Volume 66 Issue 12

  • Select all
  • Brief Communications
    Kaiwei He , Liting Xu , Qin He , Wei Zhang , Ying Zhang , Xiaobo Zhu , Junjie Yin , Qing Xiong , Qingqing Hou , Yongyan Tang , Min He , Xuewei Chen , Weitao Li
    2024, 66(12): 2581-2585. https://doi.org/10.1002/jipb.13788
  • Review Article
    Thi Kim Hang Nguyen , Hunseung Kang
    2024, 66(12): 2586-2599. https://doi.org/10.1002/jipb.13781

    Modifications to RNA have recently been recognized as a pivotal regulator of gene expression in living organisms. More than 170 chemical modifications have been identified in RNAs, with N6-methyladenosine (m6A) being the most abundant modification in eukaryotic mRNAs. The addition and removal of m6A marks are catalyzed by methyltransferases (referred to as “writers”) and demethylases (referred to as “erasers”), respectively. In addition, the m6A marks in mRNAs are recognized and interpreted by m6A-binding proteins (referred to as “readers”), which regulate the fate of mRNAs, including stability, splicing, transport, and translation. Therefore, exploring the mechanism underlying the m6A reader-mediated modulation of RNA metabolism is essential for a much deeper understanding of the epigenetic role of RNA modification in plants. Recent discoveries have improved our understanding of the functions of m6A readers in plant growth and development, stress response, and disease resistance. This review highlights the latest developments in m6A reader research, emphasizing the diverse RNA-binding domains crucial for m6A reader function and the biological and cellular roles of m6A readers in the plant response to developmental and environmental signals. Moreover, we propose and discuss the potential future research directions and challenges in identifying novel m6A readers and elucidating the cellular and mechanistic role of m6A readers in plants.

  • Research Article
    Zhixin Jiao , Xiaoning Shi , Rui Xu , Mingxia Zhang , Leelyn Chong , Yingfang Zhu
    2024, 66(12): 2600-2612. https://doi.org/10.1002/jipb.13784

    Soil salinity is a serious environmental threat to plant growth and flowering. Flowering in the right place, at the right time, ensures maximal reproductive success for plants. Salinity-delayed flowering is considered a stress coping/survival strategy and the molecular mechanisms underlying this process require further studies to enhance the crop’s salt tolerance ability. A nuclear pore complex (NPC) component, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1), has been recognized as a negative regulator of plant cold responses and flowering. Here, we challenged the role of HOS1 in regulating flowering in response to salinity stress. Interestingly, we discovered that HOS1 can directly interact with and ubiquitinate transcription factor SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9) to promote its protein degradation in response to salinity stress. Moreover, we demonstrated that HOS1 and SPL9 antagonistically regulate plant flowering under both normal and salt stress conditions. HOS1 was further shown to negatively regulate the expression of SPLs and several key flowering genes in response to salinity stress. These results jointly revealed that HOS1 is an important integrator in the process of modulating salinity-delayed flowering, thus offering new perspectives on a salinity stress coping strategy of plants.

  • Research Article
    Haiyan Bai , Yanghuan Dai , Panting Fan , Yiming Zhou , Xiangying Wang , Jingjing Chen , Yuzhe Jiao , Chang Du , Zhuoxi Huang , Yuting Xie , Xiaoyu Guo , Xiaoqiang Lang , Yongqing Ling , Yizhen Deng , Qi Liu , Shengbo He , Zhonghui Zhang
    2024, 66(12): 2613-2631. https://doi.org/10.1002/jipb.13770

    In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.

  • Research Article
    Li Zhang , Xingpeng Wen , Xin Chen , Yifan Zhou , Kun Wang , Yuxian Zhu
    2024, 66(12): 2632-2647. https://doi.org/10.1002/jipb.13777

    Cotton (Gossypium hirsutum) fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall (SCW) thickening, which requires cellulose synthase complex (CSC) activity. Here, we describe the CSC-interacting factor CASPARIAN STRIP MEMBRANE DOMAIN-LIKE1 (GhCASPL1), which contributes to SCW thickening by influencing CSC stability on the plasma membrane. GhCASPL1 is preferentially expressed in fiber cells during SCW biosynthesis and encodes a MARVEL domain protein. The ghcaspl1 ghcaspl2 mutant exhibited reduced plant height and produced mature fibers with fewer natural twists, lower tensile strength, and a thinner SCW compared to the wild type. Similarly, the Arabidopsis (Arabidopsis thaliana) caspl1 caspl2 double mutant showed a lower cellulose content and thinner cell walls in the stem vasculature than the wild type but normal plant morphology. Introducing the cotton gene GhCASPL1 successfully restored the reduced cellulose content of the Arabidopsis caspl1 caspl2 mutant. Detergent treatments, ultracentrifugation assays, and enzymatic assays showed that the CSC in the ghcaspl1 ghcaspl2 double mutant showed reduced membrane binding and decreased enzyme activity compared to the wild type. GhCASPL1 binds strongly to phosphatidic acid (PA), which is present in much higher amounts in thickening fiber cells compared to ovules and leaves. Mutating the PA-binding site in GhCASPL1 resulted in the loss of its colocalization with GhCesA8, and it failed to localize to the plasma membrane. PA may alter membrane structure to facilitate protein–protein interactions, suggesting that GhCASPL1 and PA collaboratively stabilize the CSC. Our findings shed light on CASPL functions and the molecular machinery behind SCW biosynthesis in cotton fibers.

  • Research Article
    Fuxiang Wang , Jiexin Lin , Fan Yang , Xiaofeng Chen , Yiyi Liu , Lingnan Yan , Jing Chen , Zonghua Wang , Huaan Xie , Jianfu Zhang , Huibin Xu , Songbiao Chen
    2024, 66(12): 2648-2663. https://doi.org/10.1002/jipb.13786

    Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5–OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.

  • Research Article
    Zhou-Rui Wei , Dan Jiao , Christian Anton Wehenkel , Xiao-Xin Wei , Xiao-Quan Wang
    2024, 66(12): 2664-2682. https://doi.org/10.1002/jipb.13760

    Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1, 533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis,A. ziyuanensis,A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.

  • Research Article
    Lae-Hyeon Cho , Jinmi Yoon , Gibeom Baek , Win Tun , Hyeok Chan Kwon , Dae-Woo Lee , Seok-Hyun Choi , Yang-Seok Lee , Jong-Seong Jeon , Gynheung An
    2024, 66(12): 2683-2700. https://doi.org/10.1002/jipb.13790

    Sucrose functions as a signaling molecule in several metabolic pathways as well as in various developmental processes. However, the molecular mechanisms by which sucrose regulates these processes remain largely unknown. In the present study, we demonstrate that sucrose promotes flowering by mediating the stability of a regulatory protein that represses flowering in rice. Exogenous application of sucrose promoted flowering by inducing florigen gene expression. Reduction of sucrose levels in the phloem through genetic modifications, such as the overexpression of the vacuolar invertase OsVIN2 or the mutation of OsSUT2, a sucrose transporter, delayed flowering. Analysis of relative transcript levels of floral regulatory genes showed that sucrose activated Ehd1 upstream of the florigen, with no significant effect on the expression of other upstream genes. Examination of protein stability after sucrose treatment of major floral repressors revealed that the Ghd7 protein was specifically degraded. The Ghd7 protein interacted with the E3 ligase IPA INTERACTING PROTEIN1 (IPI1), and sucrose-induced K48-linked polyubiquitination of Ghd7 via IPI1, leading to protein degradation. Mutants defective in IPI1 delayed flowering, confirming its role in modulating proteins involved in flowering. We conclude that sucrose acts as a signaling molecule to induce flowering by promoting Ghd7 degradation via IPI1.

  • Research Article
    Lulu Sun , Mengting Zhu , Xiaoxuan Zhou , Ruiyue Gu , Yuying Hou , Tongtong Li , Huang Huang , Rui Yang , Shaohui Wang , Wenchao Zhao
    2024, 66(12): 2701-2715. https://doi.org/10.1002/jipb.13794

    Root-knot nematodes (RKNs; Meloidogyne spp.) are a serious threat to crop production. The competition between plants and pathogens for assimilates influences the outcome of their interactions. However, the mechanisms by which plants and nematodes compete with each other for assimilates have not been elucidated. In this study, we demonstrated that miR396a plays a negative role in defense against RKNs and a positive role in sugar accumulation in tomato roots. The overexpression of SlGRF8 (Solanum lycopersicum growth-regulating factor 8), the target of miR396a, decreased the sugar content of the roots and the susceptibility to RKNs, whereas the grf8-cr mutation had the opposite effects. Furthermore, we confirmed that SlGRF8 regulated the sugar content in roots by directly activating the transcription of SlSTP10 (Solanum lycopersicum sugar transporter protein 10) in response to RKN stress. Moreover,SlSTP10 was expressed primarily in the tissues surrounding giant cells, and the SlSTP10 knockout increased both the sugar content in the roots and the plant’s susceptibility to RKNs. Overall, this study provides important insight into the molecular mechanism through which the miR396a-SlGRF8-SlSTP10 module regulates sugar allocation in roots under RKN stress.

  • Research Article
    Jun-Xiu Wang , Yong Li , Xin-Wei Wang , Ke Cao , Chang-Wen Chen , Jin-Long Wu , Wei-Chao Fang , Geng-Rui Zhu , Xue-Jia Chen , Dan-Dan Guo , Jiao Wang , Ya-Lin Zhao , Jia-Qi Fan , Su-Ning Liu , Wen-Qing Li , Hang-Ling Bie , Qiang Xu , Li-Rong Wang
    2024, 66(12): 2716-2735. https://doi.org/10.1002/jipb.13782

    Wild species of domesticated crops provide valuable genetic resources for resistance breeding. Prunus davidiana, a wild relative of peach with high heterozygosity and diverse stress tolerance, exhibits high resistance against aphids. However, the highly heterozygous genome of P. davidiana makes determining the underlying factors influencing resistance traits challenging. Here, we present the 501.7 Mb haplotype-resolved genome assembly of P. davidiana. Genomic comparisons of the two haplotypes revealed 18, 152 structural variations, 2, 699 Pda_hap1-specific and 2, 702 Pda_hap2-specific genes, and 1, 118 allele-specific expressed genes. Genome composition indicated 4.1% of the P. davidiana genome was non-peach origin, out of which 94.5% was derived from almond. Based on the haplotype genome, the aphid resistance quantitative trait locus (QTL) was mapped at the end of Pda03. From the aphid resistance QTL,PdaWRKY4 was identified as the major dominant gene, with a 9-bp deletion in its promoter of the resistant phenotype. Specifically,PdaWRKY4 regulates aphid resistance by promoting PdaCYP716A1-mediated anti-aphid metabolite betulin biosynthesis. Moreover, we employed a genome design to develop a breeding workflow for rapidly and precisely producing aphid-resistant peaches. In conclusion, this study identifies a novel aphid resistance gene and provides insights into genome design for the development of resistant fruit cultivars.

  • Research Article
    Asako Kobayashi , Mao Suganami , Hideki Yoshida , Yoichi Morinaka , Syuto Watanabe , Yoshie Machida , Genki Chaya , Fumihiro Nakaoka , Nobuhito Sato , Kotaro Miura , Makoto Matsuoka
    2024, 66(12): 2736-2753. https://doi.org/10.1002/jipb.13785

    Flowering time is a crucial rice trait that influences its adaptation to various environments, cropping schedules, and agronomic characteristics. Rice breeders have exploited spontaneous mutations in heading date genes to regulate the flowering time. In the present study, we investigated how breeders in Fukui Prefecture regulated days to heading while developing promising rice varieties. Genome-wide association studies (GWAS) identified Hd1, Hd16, and Hd18 as the major genes controlling days to heading in the population. However, we suspected that this highly bred population might exhibit genomic stratification, which could lead to spurious or false correlations in the GWAS. Thus, we also conducted correlation and partial correlation analyses, which uncovered another key heading date gene,Hd17, that GWAS failed to detect because of its linkage disequilibrium with the major effect gene Hd16. Examination of haplotype frequencies across different breeding periods revealed that the early-heading Hd16 (Hd16(E)) and late-heading Hd17 (Hd17(L)) were increasingly co-selected in the Hd1 functional population. Varieties carrying this Hd16(E)/Hd17(L) combination exhibited days to heading in the range of 70–80, which corresponds to the peak temperature and sunshine period and is also optimal for grain quality and yield components in the Fukui environment. The present study highlights that it is imperative to remain vigilant for Type I (false positives) and Type II (false negatives) errors when performing GWAS on highly bred populations and to implement appropriate countermeasures by accounting for gene-by-gene interactions established through the breeding process. We also discuss the effectiveness of Hd16(E), which is not used outside Japan for subtle days to heading control but is widely used in Japan at certain latitudes.

  • Research Article
    Xun Wang , Zhijuan Diao , Chang Cao , Yan Liu , Na Xia , Youlian Zhang , Ling Lu , Fanyu Kong , Houli Zhou , Lizhe Chen , Jing Zhang , Bangsheng Wang , Ronghua Huang , Dingzhong Tang , Shengping Li
    2024, 66(12): 2754-2771. https://doi.org/10.1002/jipb.13783

    Plants need to fine-tune defense responses to maintain a robust but flexible host barrier to various pathogens. Helix-loop-helix/basic helix-loop-helix (HLH/bHLH) complexes play important roles in fine-tuning plant development. However, the function of these genes in plant immunity and how they are regulated remain obscure. Here, we identified an atypical bHLH transcription factor,Oryza sativa (Os)HLH46, that interacts with rice receptor-like cytoplasmic kinase (RLCK) Os BRASSINOSTEROID-SIGNALING KINASE1-2 (OsBSK1-2), which plays a key role in rice blast resistance. OsBSK1-2 stabilized OsHLH46 both in vivo and in vitro. In addition, OsHLH46 positively regulates rice blast resistance, which depends on OsBSK1-2. OsHLH46 has no transcriptional activation activity and interacts with a typical bHLH protein, OsbHLH6, which negatively regulates rice blast resistance. OsbHLH6 binds to the promoter of OsWRKY45 and inhibits its expression, while OsHLH46 suppresses the function of OsbHLH6 by blocking its DNA binding and transcriptional inhibition of OsWRKY45. Consistent with these findings,OsWRKY45 was up-regulated in OsHLH46-overexpressing plants. In addition, the oshlh46 mutant overexpressing OsbHLH6 is more susceptible to Magnaporthe oryzae than is the wild type, suggesting that OsHLH46 suppresses OsbHLH6-mediated rice blast resistance. Our results not only demonstrated that OsBSK1-2 regulates rice blast resistance via the OsHLH46/OsbHLH6 complex, but also uncovered a new mechanism for plants to fine-tune plant immunity by regulating the HLH/bHLH complex via RLCKs.