The OsMAPK5–OsWRKY72 module negatively regulates grain length and grain weight in rice

Fuxiang Wang , Jiexin Lin , Fan Yang , Xiaofeng Chen , Yiyi Liu , Lingnan Yan , Jing Chen , Zonghua Wang , Huaan Xie , Jianfu Zhang , Huibin Xu , Songbiao Chen

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2648 -2663.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2648 -2663. DOI: 10.1002/jipb.13786
Research Article

The OsMAPK5–OsWRKY72 module negatively regulates grain length and grain weight in rice

Author information +
History +
PDF

Abstract

Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5–OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.

Keywords

grain length / grain weight / OsARF6 / OsMAPK5 / OsWRKY72 / rice

Cite this article

Download citation ▾
Fuxiang Wang, Jiexin Lin, Fan Yang, Xiaofeng Chen, Yiyi Liu, Lingnan Yan, Jing Chen, Zonghua Wang, Huaan Xie, Jianfu Zhang, Huibin Xu, Songbiao Chen. The OsMAPK5–OsWRKY72 module negatively regulates grain length and grain weight in rice. Journal of Integrative Plant Biology, 2024, 66(12): 2648-2663 DOI:10.1002/jipb.13786

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Che, R.,Tong, H.,Shi, B.,Liu, Y.,Fang, S.,Liu, D.,Xiao, Y.,Hu, B.,Liu, L.,Wang, H., et al. (2016). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants. 2:15195.

[2]

Chen, J.,Wang, L., and Yuan, M. (2021). Update on the roles of rice MAPK cascades. Int. J. Mol. Sci. 22:1679.

[3]

Chen, S.,Tao, L.,Zeng, L.,Vega-Sanchez, M.E.,Umemura, K., and Wang, G.L (2016). A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol. Plant Pathol. 7:417–427.

[4]

Chen, X.,Jiang, L.,Zheng, J.,Chen, F.,Wang, T.,Wang, M.,Tao, Y.,Wang, H.,Hong, Z.,Huang, Y., et al. (2019a). A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice. J. Exp. Bot. 70:3851–3866.

[5]

Chen, Z.,Zheng, W.,Chen, L.,Li, C.,Liang, T.,Chen, Z.,Xu, H.,Han, Y.,Kong, L.,Zhao, X., et al. (2019b). Green fluorescent protein-and discosoma sp. red fluorescent protein-tagged organelle marker lines for protein subcellular localization in rice. Front. Plant Sci. 10:1421.

[6]

Duan, P.,Ni, S.,Wang, J.,Zhang, B.,Xu, R.,Wang, Y.,Chen, H.,Zhu, X., and Li, Y. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2:15203.

[7]

Duan, P.,Rao, Y.,Zeng, D.,Yang, Y.,Xu, R.,Zhang, B.,Dong, G.,Qian, Q., and Li, Y. (2014). SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J. 77:547–557.

[8]

Fan, C.,Xing, Y.,Mao, H.,Lu, T.,Han, B.,Xu, C.,Li, X., and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112:1164–1171.

[9]

Feng, Z.,Wu, C.,Wang, C.,Roh, J.,Zhang, L.,Chen, J.,Zhang, S.,Zhang, H.,Yang, C.,Hu, J., et al. (2016). SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J. Exp. Bot. 67:4241–4253.

[10]

Guo, F.,Huang, Y.,Qi, P.,Lian, G.,Hu, X.,Han, N.,Wang, J.,Zhu, M.,Qian, Q., and Bian, H. (2021). Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. New Phytol. 229:2676–2692.

[11]

Guo, T.,Chen, K.,Dong, N.Q.,Shi, C.L.,Ye, W.W.,Gao, J.P.,Shan, J.X., and Lin, H.X (2018). GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30:871–888.

[12]

Guo, T.,Lu, Z.Q.,Shan, J.X.,Ye, W.W., and Lin, H.X (2020). ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell 32:2763–2779.

[13]

He, F.,Zhang, F.,Sun, W.,Ning, Y., and Wang, G.L (2018). A versatile vector toolkit for functional analysis of rice genes. Rice (N Y) 11:27.

[14]

Heang, D., and Sassa, H. (2012). Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS ONE 7:e31325.

[15]

Hiei, Y.,Ohta, S.,Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271–282.

[16]

Hou, Y.,Wang, Y.,Tang, L.,Tong, X.,Wang, L.,Liu, L.,Huang, S., and Zhang, J. (2019). SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. iScience 16:499–510.

[17]

Hu, J.,Wang, Y.,Fang, Y.,Zeng, L.,Xu, J.,Yu, H.,Shi, Z.,Pan, J.,Zhang, D.,Kang, S., et al. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8:1455–1465.

[18]

Hu, J.,Zhou, J.,Peng, X.,Xu, H.,Liu, C.,Du, B.,Yuan, H.,Zhu, L., and He, G. (2011). The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol. 156:856–872.

[19]

Hu, Z.,Lu, S.J.,Wang, M.J.,He, H.,Sun, L.,Wang, H.,Liu, X.H.,Jiang, L.,Sun, J.L.,Xin, X., et al. (2018). A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol. Plant 11:736–749.

[20]

Ishimaru, K.,Hirotsu, N.,Madoka, Y.,Murakami, N.,Hara, N.,Onodera, H.,Kashiwagi, T.,Ujiie, K.,Shimizu, B.,Onishi, A., et al. (2013). Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45:707–711.

[21]

Jefferson, R.A.,Kavanagh, T.A., and Bevan, M.W (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907.

[22]

Jin, J.,Hua, L.,Zhu, Z.,Tan, L.,Zhao, X.,Zhang, W.,Liu, F.,Fu, Y.,Cai, H.,Sun, X., et al. (2016). GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell 28:2453–2463.

[23]

Kim, S.H.,Oikawa, T.,Kyozuka, J.,Wong, H.L.,Umemura, K.,Kishi-Kaboshi, M.,Takahashi, A.,Kawano, Y.,Kawasaki, T., and Shimamoto, K. (2012). The bHLH Rac Immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity. Plant Cell Physiol. 53:740–754.

[24]

Kishi-Kaboshi, M.,Okada, K.,Kurimoto, L.,Murakami, S.,Umezawa, T.,Shibuya, N.,Yamane, H.,Miyao, A.,Takatsuji, H.,Takahashi, A., et al. (2010). A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J. 63:599–612.

[25]

Li, H.,Zhang, Y.,Wu, C.,Bi, J.,Chen, Y.,Jiang, C.,Cui, M.,Chen, Y.,Hou, X.,Yuan, M., et al. (2022). Fine-tuning OsCPK18/OsCPK4 activity via genome editing of phosphorylation motif improves rice yield and immunity. Plant Biotechnol. J. 20:2258–2271.

[26]

Li, L.,Li, J.,Liu, K.,Jiang, C.,Jin, W.,Ye, J.,Qin, T.,Luo, B.,Chen, Z.,Li, J., et al. (2024). DGW1, encoding an hnRNP-like RNA binding protein, positively regulates grain size and weight by interacting with GW6 mRNA. Plant Biotechnol. J. 22:512–526.

[27]

Li, N., and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33:23–32.

[28]

Li, S.,Gao, F.,Xie, K.,Zeng, X.,Cao, Y.,Zeng, J.,He, Z.,Ren, Y.,Li, W.,Deng, Q., et al. (2016). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 14:2134–2146.

[29]

Li, N.,Xu, R., and Li, Y. (2019). Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 70:435–463.

[30]

Liu, D.,Zhao, H.,Xiao, Y.,Zhang, G.,Cao, S.,Yin, W.,Qian, Y.,Yin, Y.,Zhang, J.,Chen, S., et al. (2022a). A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Mol. Plant 15:293–307.

[31]

Liu, K.,Wang, X.,Liu, H.,Wu, J.,Liang, F.,Li, S.,Zhang, J., and Peng, X. (2022b). OsAT1, an anion transporter, negatively regulates grain size and yield in rice. Physiol. Plant. 174:e13692.

[32]

Liu, L.,Tong, H.,Xiao, Y.,Che, R.,Xu, F.,Hu, B.,Liang, C.,Chu, J.,Li, J., and Chu, C. (2015b). Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. U. S. A. 112:11102–11107.

[33]

Liu, L.,Zhao, L.,Liu, Y.,Zhu, Y.,Chen, S.,Yang, L.,Li, X.,Chen, W.,Xu, Z.,Xu, P., et al. (2024). Transcription factor OsWRKY72 controls rice leaf angle by regulating LAZY1-mediated shoot gravitropism. Plant Physiol. 195:1586–1600.

[34]

Liu, S.,Hua, L.,Dong, S.,Chen, H.,Zhu, X.,Jiang, J.,Zhang, F.,Li, Y.,Fang, X., and Chen, F. (2015a). OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J. 84:672–681.

[35]

Long, Y.,Wang, C.,Liu, C.,Li, H.,Pu, A.,Dong, Z.,Wei, X., and Wan, X. (2024). Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J. Adv. Res. 62:27–46.

[36]

Lou, Q.,Guo, H.,Li, J.,Han, S.,Khan, N.U.,Gu, Y.,Zhao, W.,Zhang, Z.,Zhang, H.,Li, Z., et al. (2022). Cold-adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9. Plant J. 111:1032–1051.

[37]

Ma, M.,Shen, S.Y.,Bai, C.,Wang, W.Q.,Feng, X.H.,Ying, J.Z., and Song, X.J (2023). Control of grain size in rice by TGW3 phosphorylation of OsIAA10 through potentiation of OsIAA10-OsARF4-mediated auxin signaling. Cell Rep. 42:112187.

[38]

Ma, X.,Zhang, Q.,Zhu, Q.,Liu, W.,Chen, Y.,Qiu, R.,Wang, B.,Yang, Z.,Li, H.,Lin, Y., et al. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8:1274–1284.

[39]

Meng, X., and Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–266.

[40]

Ori, N. (2019). Dissecting the biological functions of ARF and Aux/IAA Genes. Plant Cell 31:1210–1211.

[41]

Qiao, J.,Jiang, H.,Lin, Y.,Shang, L.,Wang, M.,Li, D.,Fu, X.,Geisler, M.,Qi, Y.,Gao, Z., et al. (2021). A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol. Plant 14:1683–1698.

[42]

Rao, K.P.,Richa, T.,Kumar, K.,Raghuram, B., and Sinha, A.K (2010). In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res. 17:139–153.

[43]

Ren, M.,Huang, M.,Qiu, H.,Chun, Y.,Li, L.,Kumar, A.,Fang, J.,Zhao, J.,He, H., and Li, X. (2021). Genome-wide association study of the genetic basis of effective tiller number in rice. Rice 14:56.

[44]

Shao, Y.,Zhou, H.Z.,Wu, Y.,Zhang, H.,Lin, J.,Jiang, X.,He, Q.,Zhu, J.,Li, Y.,Yu, H., et al. (2019). OsSPL3, an SBP-domain protein, regulates crown root development in rice. Plant Cell 31:1257–1275.

[45]

Si, L.,Chen, J.,Huang, X.,Gong, H.,Luo, J.,Hou, Q.,Zhou, T.,Lu, T.,Zhu, J.,Shangguan, Y., et al. (2016). OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48:447–456.

[46]

Singh, P., and Sinha, A.K (2016). A positive feedback loop governed by SUB1A1 interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 imparts submergence tolerance in rice. Plant Cell 28:1127–1143.

[47]

Song, Y.,Chen, L.,Zhang, L., and Yu, D. (2010). Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J. Biosci. 35:459–471.

[48]

Sun, P.,Zhang, W.,Wang, Y.,He, Q.,Shu, F.,Liu, H.,Wang, J.,Yuan, L., and Deng, H. (2016). OsGRF4 controls grain shape, panicle length and seed shattering in rice. J. Integr. Plant Biol. 58:836–847.

[49]

Tian, P.,Liu, J.,Mou, C.,Shi, C.,Zhang, H.,Zhao, Z.,Lin, Q.,Wang, J.,Wang, J.,Zhang, X., et al. (2019). GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. J. Integr. Plant Biol. 61:1171–1185.

[50]

Ulker, B., and Somssich, I.E (2004). WRKY transcription factors: From DNA binding towards biological function. Curr. Opin. Plant Biol. 7:491–498.

[51]

Wang, A.,Hou, Q.,Si, L.,Huang, X.,Luo, J.,Lu, D.,Zhu, J.,Shangguan, Y.,Miao, J.,Xie, Y., et al. (2019a). The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol. 180:2077–2090.

[52]

Wang, H.,Hou, Y.,Wang, S.,Tong, X.,Tang, L.,Abolore, A.A.,Zhang, J., and Wang, Y. (2021). WRKY72 negatively regulates seed germination through interfering gibberellin pathway in rice. Rice Sci. 28:1–5.

[53]

Wang, Q.,Li, J.,Hu, L.,Zhang, T., and Lou, Y. (2013). OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep. 32:1075–1084.

[54]

Wang, T.,Zou, T.,He, Z.,Yuan, G.,Luo, T.,Zhu, J.,Liang, Y.,Deng, Q.,Wang, S.,Zheng, A., et al. (2019b). GRAIN LENGTH AND AWN 1 negatively regulates grain size in rice. J. Integr. Plant Biol. 61:1036–1042.

[55]

Wen, Y.,Hu, P.,Fang, Y.,Tan, Y.,Wang, Y.,Wu, H.,Wang, J.,Wu, K.,Chai, B.,Zhu, L., et al. (2024). GW9 determines grain size and floral organ identity in rice. Plant Biotechnol. J. 22:915–928.

[56]

Xia, D.,Zhou, H.,Liu, R.,Dan, W.,Li, P.,Wu, B.,Chen, J.,Wang, L.,Gao, G.,Zhang, Q., et al. (2018). GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol. Plant 11:754–756.

[57]

Xie, K.,Chen, J.,Wang, Q., and Yang, Y. (2014). Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell 26:3077–3089.

[58]

Xie, Z.,Zhang, Z.L.,Zou, X.,Huang, J.,Ruas, P.,Thompson, D., and Shen, Q.J (2005). Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 137:176–189.

[59]

Xing, Y., and Zhang, Q. (2010). Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61:421–442.

[60]

Xiong, L., and Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759.

[61]

Xu, J., and Zhang, S. (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 20:56–64.

[62]

Xu, R.,Duan, P.,Yu, H.,Zhou, Z.,Zhang, B.,Wang, R.,Li, J.,Zhang, G.,Zhuang, S.,Lyu, J., et al. (2018a). Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol. Plant 11:860–873.

[63]

Xu, R.,Yu, H.,Wang, J.,Duan, P.,Zhang, B.,Li, J.,Li, Y.,Xu, J.,Lyu, J.,Li, N., et al. (2018b). A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J. 95:937–946.

[64]

Ye, M.,Glauser, G.,Lou, Y.,Erb, M., and Hu, L. (2019). Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 31:687–698.

[65]

Ying, J.Z.,Ma, M.,Bai, C.,Huang, X.H.,Liu, J.L.,Fan, Y.Y., and Song, X.J (2018). TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol. Plant 11:750–753.

[66]

Zhang, M., and Zhang, S. (2022). Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant Biol. 64:301–341.

[67]

Zhang, Q. (2007). Strategies for developing green super rice. Proc. Natl. Acad. Sci. U. S. A. 104:16402–16409.

[68]

Zhang, Z.,Li, J.,Li, F.,Liu, H.,Yang, W.,Chong, K., and Xu, Y. (2017). OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev. Cell 43:731–743.

[69]

Zhang, Z.,Li, J.,Tang, Z.,Sun, X.,Zhang, H.,Yu, J.,Yao, G.,Li, G.,Guo, H.,Li, J., et al. (2018). Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J. Exp. Bot. 69:4723–4737.

[70]

Zhao, D.S.,Li, Q.F.,Zhang, C.Q.,Zhang, C.,Yang, Q.Q.,Pan, L.X.,Ren, X.Y.,Lu, J.,Gu, M.H., and Liu, Q.Q (2018). GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 9:1240.

[71]

Zhou, S.R., and Xue, H.W (2020). The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. J. Integr. Plant Biol. 62:847–864.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/