The receptor-like cytoplasmic kinase OsBSK1-2 regulates immunity via an HLH/bHLH complex

Xun Wang , Zhijuan Diao , Chang Cao , Yan Liu , Na Xia , Youlian Zhang , Ling Lu , Fanyu Kong , Houli Zhou , Lizhe Chen , Jing Zhang , Bangsheng Wang , Ronghua Huang , Dingzhong Tang , Shengping Li

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2754 -2771.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2754 -2771. DOI: 10.1002/jipb.13783
Research Article

The receptor-like cytoplasmic kinase OsBSK1-2 regulates immunity via an HLH/bHLH complex

Author information +
History +
PDF

Abstract

Plants need to fine-tune defense responses to maintain a robust but flexible host barrier to various pathogens. Helix-loop-helix/basic helix-loop-helix (HLH/bHLH) complexes play important roles in fine-tuning plant development. However, the function of these genes in plant immunity and how they are regulated remain obscure. Here, we identified an atypical bHLH transcription factor,Oryza sativa (Os)HLH46, that interacts with rice receptor-like cytoplasmic kinase (RLCK) Os BRASSINOSTEROID-SIGNALING KINASE1-2 (OsBSK1-2), which plays a key role in rice blast resistance. OsBSK1-2 stabilized OsHLH46 both in vivo and in vitro. In addition, OsHLH46 positively regulates rice blast resistance, which depends on OsBSK1-2. OsHLH46 has no transcriptional activation activity and interacts with a typical bHLH protein, OsbHLH6, which negatively regulates rice blast resistance. OsbHLH6 binds to the promoter of OsWRKY45 and inhibits its expression, while OsHLH46 suppresses the function of OsbHLH6 by blocking its DNA binding and transcriptional inhibition of OsWRKY45. Consistent with these findings,OsWRKY45 was up-regulated in OsHLH46-overexpressing plants. In addition, the oshlh46 mutant overexpressing OsbHLH6 is more susceptible to Magnaporthe oryzae than is the wild type, suggesting that OsHLH46 suppresses OsbHLH6-mediated rice blast resistance. Our results not only demonstrated that OsBSK1-2 regulates rice blast resistance via the OsHLH46/OsbHLH6 complex, but also uncovered a new mechanism for plants to fine-tune plant immunity by regulating the HLH/bHLH complex via RLCKs.

Keywords

Magnaporthe oryzae / OsbHLH6 / OsBSK1-2 / OsHLH46 / rice / rice blast resistance / RLCK

Cite this article

Download citation ▾
Xun Wang, Zhijuan Diao, Chang Cao, Yan Liu, Na Xia, Youlian Zhang, Ling Lu, Fanyu Kong, Houli Zhou, Lizhe Chen, Jing Zhang, Bangsheng Wang, Ronghua Huang, Dingzhong Tang, Shengping Li. The receptor-like cytoplasmic kinase OsBSK1-2 regulates immunity via an HLH/bHLH complex. Journal of Integrative Plant Biology, 2024, 66(12): 2754-2771 DOI:10.1002/jipb.13783

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ao,Y.,Li,Z., Feng,D.,Xiong, F.,Liu,J.,Li,J.,Wang,M., Wang,J.,Liu, B., and Wang,H. (2014). OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J. 80:1072–1084.

[2]

Bai,J.,Zhou,Y., Sun,J.,Chen, K.,Han,Y.,Wang,R.,Zou,Y., Du,M., and Lu, D. (2023). BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling. Nat. Commun. 14:4624.

[3]

Cao,S.,Wang,Y., Gao,Y.,Xu, R.,Ma,J.,Xu,Z.,Shang-Guan, K.,Zhang,B., and Zhou,Y. (2023). The RLCK-VND6 module coordinates secondary cell wall formation and adaptive growth in rice. Mol. Plant 16:999–1015.

[4]

Cao,Y.,Liu,L., Ma,K.,Wang, W.,Lv,H.,Gao,M.,Wang,X., Zhang,X.,Ren, S.,Zhang,N., et al. (2022). The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. J. Integr. Plant Biol. 64:1102–1115.

[5]

Chang,M.,Chen,H., Liu,F., and Fu, Z. (2022). PTI and ETI: Convergent pathways with diverse elicitors. Trends Plant Sci. 27:113–115.

[6]

Chen,H.,Zou,Y., Shang,Y.,Lin, H.,Wang,Y.,Cai,R.,Tang,X., and Zhou,J. (2008). Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146:368–376.

[7]

Chen,R.,Sun,P., Zhong,G.,Wang, W., and Tang,D. (2022). The RECEPTOR-LIKE PROTEIN53 immune complex associates with LLG1 to positively regulate plant immunity. J. Integr. Plant Biol. 64:1833–1846.

[8]

Cheng,Q.,Dong,L., Gao,T.,Liu, T.,Li,N.,Wang,L.,Chang,X., Wu,J.,Xu, P., and Zhang,S. (2018). The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J. Exp. Bot. 69:2527–2541.

[9]

Fu,Z.,Yan,S., Saleh,A.,Wang, W.,Ruble,J.,Oka,N.,Mohan,R., Spoel,S.,Tada, Y.,Zheng,N., et al. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232.

[10]

Hao,Y.,Oh,E., Choi,G.,Liang, Z., and Wang,Z. (2012). Interactions between HLH and bHLH factors modulate light-regulated plant development. Mol. Plant 5:688–697.

[11]

Hao,Y.,Zong,X., Ren,P.,Qian, Y., and Fu,A. (2021). Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int. J. Mol. Sci. 22:7152.

[12]

Hou,H.,Fang,J., Liang,J.,Diao, Z.,Wang,W.,Yang,D.,Li,S., and Tang,D. (2020). OsExo70B1 positively regulates disease resistance to in rice. Int. J. Mol. Sci. 21:7049.

[13]

Kadota,Y.,Sklenar, J.,Derbyshire,P.,Stransfeld,L.,Asai,S., Ntoukakis,V.,Jones,J.,Shirasu, K.,Menke,F.,Jones,A., et al. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:43–55.

[14]

Koji,M.,Takafumi, S.,Susumu,M.,Yoko,N.,Eiichi,M., Hideaki,N.,Hisakazu, Y., and Kazunori,O. (2012). Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. Protoplasma 250:241–249.

[15]

Lal,N.,Nagalakshmi, U.,Hurlburt,N.,Flores,R.,Bak,A., Sone,P.,Ma, X.,Song,G.,Walley,J.,Shan,L., et al. (2018). The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity. Cell Host Microbe 23:485–497.e485.

[16]

Lee,J.,Jin,S., Kim,S.,Kim, W., and Ahn,J. (2017). A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in mesophyll protoplasts. Plant Methods 13:42.

[17]

Lee,Y.,Shiu,S., and Grotewold,E. (2023). Evolution and diversification of the ACT-like domain associated with plant basic helix-loop-helix transcription factors. Proc. Natl. Acad. Sci. U.S.A. 120:e2219469120.

[18]

Li,L.,Li,M., Yu,L.,Zhou, Z.,Liang,X.,Liu,Z.,Cai,G., Gao,L.,Zhang, X.,Wang,Y., et al. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338.

[19]

Li,S.,Xiang,X., Diao,Z.,Xia, N.,Lu,L.,Zhang,J.,Chen,Z., and Tang,D. (2024). The OsBSK1-2-MAPK module regulates blast resistance in rice. Crop J. 12:110–120.

[20]

Liang,J.,Lu,L., Zhou,H.,Fang, J.,Zhao,Y.,Hou,H.,Chen,L., Cao,C.,Yang, D.,Diao,Z., et al. (2023). Receptor-like kinases OsRLK902-1 and OsRLK902-2 form immune complexes with OsRLCK185 to regulate rice blast resistance. J. Exp. Bot. 75:1565–1579.

[21]

Liang,X., and Zhou, J. (2018). Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling. Annu. Rev. Plant. Biol. 69:267–299.

[22]

Lin,R.,Ding,L., Casola,C.,Ripoll, D.,Feschotte,C., and Wang,H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science (N.Y.) 318:1302–1305.

[23]

Liu,N.,Hake,K., Wang,W.,Zhao, T.,Romeis,T., and Tang,D. (2017). exo70B1-CALCIUM-DEPENDENT PROTEIN KINASE5 associates with the truncated NLR protein TIR-NBS2 to contribute to mediated immunity. Plant Cell 29:746–759.

[24]

Liu,W.,Tai,H., Li,S.,Gao, W.,Zhao,M.,Xie,C., and Li, W. (2014). bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 201:1192–1204.

[25]

Liu,Z.,Wu,Y., Yang,F.,Zhang, Y.,Chen,S.,Xie,Q.,Tian,X., and Zhou,J. (2013). BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc. Natl. Acad. Sci. U.S.A. 110:6205–6210.

[26]

Louche,A.,Salcedo, S., and Bigot,S. (2017). Protein-protein interactions: Pull-down assays. Methods Mol. Biol. (Clifton, N.J.) 1615:247–255.

[27]

Lu,D.,Wu,S., Gao,X.,Zhang, Y.,Shan,L., and He,P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. U.S.A. 107:496–501.

[28]

Lu,L.,Diao,Z., Yang,D.,Wang, X.,Zheng,X.,Xiang,X.,Xiao,Y., Chen,Z.,Wang, W.,Wu,Y., et al. (2022a). The 14-3-3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant Cell Environ. 45:1065–1081.

[29]

Lu,R.,Li,Y., Zhang,J.,Wang, Y.,Zhang,J.,Li,Y.,Zheng,Y., and Li,X. (2022b). The bHLH/HLH transcription factors GhFP2 and GhACE1 antagonistically regulate fiber elongation in cotton. Plant Physiol. 189:628–643.

[30]

Lu,R.,Zhang,J., Wu,Y.,Wang, Y.,Zhang,J.,Zheng,Y.,Li,Y., and Li,X. (2021). bHLH transcription factors LP1 and LP2 regulate longitudinal cell elongation. Plant Physiol. 187:2577–2591.

[31]

Macho,A., and Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263–272.

[32]

Martín-Barranco,A.,Spielmann,J.,Dubeaux, G.,Vert,G., and Zelazny,E. (2020). Dynamic control of the high-affinity iron uptake complex in root epidermal cells. Plant Physiol. 184:1236–1250.

[33]

Meng,F.,Yang,C., Cao,J.,Chen, H.,Pang,J.,Zhao,Q.,Wang,Z., Qing Fu,Z., and Liu, J. (2020). A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. J. Integr. Plant Biol. 62:1552–1573.

[34]

Mou,B.,Zhao,G., Wang,J.,Wang, S.,He,F.,Ning,Y.,Li,D., Zheng,X.,Cui, F.,Xue,F., et al. (2023). The OsCPK17-OsPUB12-OsRLCK176 module regulates immune homeostasis in rice. Plant Cell 36:987–1006.

[35]

Murre,C.,McCaw,P., and Baltimore,D. (1989). A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.

[36]

Niu,Y.,Huang,X., He,Z.,Zhang, Q.,Meng,H.,Shi,H.,Feng,B., Zhou,Y.,Zhang, J.,Lu,G., et al. (2022). Phosphorylation of OsTGA5 by casein kinase II compromises its suppression of defense-related gene transcription in rice. Plant Cell 34:3425–3442.

[37]

Sharma,N.,Xin,R., Kim,D.,Sung, S.,Lange,T., and Huq,E. (2016). NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 143:682–690.

[38]

Shi,H.,Li,Q., Luo,M.,Yan, H.,Xie,B.,Li,X.,Zhong,G., Chen,D., and Tang, D. (2022). BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. Plant Cell 34:1768–1783.

[39]

Shi,H.,Shen,Q., Qi,Y.,Yan, H.,Nie,H.,Chen,Y.,Zhao,T., Katagiri,F., and Tang, D. (2013). BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25:1143–1157.

[40]

Shimono,M.,Koga,H., Akagi,A.,Hayashi, N.,Goto,S.,Sawada,M.,Kurihara, T.,Matsushita,A.,Sugano,S.,Jiang,C., et al. (2012). Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol. Plant Pathol. 13:83–94.

[41]

Su,B.,Zhang,X., Li,L.,Abbas, S.,Yu,M.,Cui,Y.,Baluška, F.,Hwang,I.,Shan,X., and Lin, J. (2021). Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity. Mol. Plant 14:588–603.

[42]

Tang,D.,Wang,G., and Zhou,J. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell 29:618–637.

[43]

Tang,W.,Kim,T., Oses-Prieto,J.,Sun,Y.,Deng,Z., Zhu,S.,Wang, R.,Burlingame,A., and Wang,Z. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science (New York, N.Y.) 321:557–560.

[44]

Wang,C.,Wang,G., Zhang,C.,Zhu, P.,Dai,H.,Yu,N.,He,Z., Xu,L., and Wang, E. (2017a). OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol. Plant 10:619–633.

[45]

Wang,J.,Liu,X., Zhang,A.,Ren, Y.,Wu,F.,Wang,G.,Xu,Y., Lei,C.,Zhu, S.,Pan,T., et al. (2019a). A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res. 29:820–831.

[46]

Wang,J.,Shi,H., Zhou,L.,Peng, C.,Liu,D.,Zhou,X.,Wu,W., Yin,J.,Qin, H.,Ma,W., et al. (2017b). OsBSK1-2, an orthologous of AtBSK1, is involved in rice immunity. Front. Plant Sci. 8:908.

[47]

Wang,T.,Chang,C., Gu,C.,Tang, S.,Xie,Q., and Shen,Q. (2016). An E3 ligase affects the NLR receptor stability and immunity to powdery mildew. Plant Physiol. 172:2504–2515.

[48]

Wang,Z.,Yang,Z., and Li,F. (2019b). Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol. J. 17:1706–1722.

[49]

Wei,K., and Chen, H. (2018). Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biol. 18:309.

[50]

Weng,L.,Zhao,F., Li,R.,Xu, C.,Chen,K., and Xiao,H. (2015). The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiol. 167:931–949.

[51]

Xuetao,S.,Yehui,X., Kai,Z.,Yinshan, Z.,Junqi,Z.,Lili,Z.,Yutao,X., Guo-Liang,W., and Wende,L. (2023). The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice. Mol. Plant 16:739–755.

[52]

Yamada,K.,Yamaguchi, K.,Shirakawa,T.,Nakagami,H.,Mine,A., Ishikawa,K.,Fujiwara, M.,Narusaka,M.,Narusaka,Y.,Ichimura, K., et al. (2016). The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J. 35:2468–2483.

[53]

Yamada,K.,Yamaguchi, K.,Yoshimura,S.,Terauchi,A., and Kawasaki, T. (2017). Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant Cell Physiol. 58:993–1002.

[54]

Yamaguchi,K.,Yamada,K., Ishikawa,K.,Yoshimura, S.,Hayashi,N.,Uchihashi,K.,Ishihama, N.,Kishi-Kaboshi,M.,Takahashi,A.,Tsuge,S., et al. (2013). A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13:347–357.

[55]

Yan,H.,Zhao,Y., Shi,H.,Li, J.,Wang,Y., and Tang,D. (2018). BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiol. 176:2991–3002.

[56]

Yang,D.,Li,S., Xiao,Y.,Lu, L.,Zheng,Z.,Tang,D., and Cui, H. (2021). Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. Plant Cell Environ. 44:3103–3121.

[57]

Yi,K.,Menand,B., Bell,E., and Dolan, L. (2010). A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat. Genet. 42:264–267.

[58]

Zhai,K.,Liang,D., Li,H.,Jiao, F.,Yan,B.,Liu,J.,Lei,Z., Huang,L.,Gong, X.,Wang,X., et al. (2022). NLRs guard metabolism to coordinate pattern-and effector-triggered immunity. Nature 601:245–251.

[59]

Zhang,J.,Li,W., Xiang,T.,Liu, Z.,Laluk,K.,Ding,X.,Zou,Y., Gao,M.,Zhang, X.,Chen,S., et al. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301.

[60]

Zhang,J.,Liu,B., Li,M.,Feng, D.,Jin,H.,Wang,P.,Liu,J., Xiong,F.,Wang, J., and Wang,H. (2015). The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805.

[61]

Zhang,L.,Bai,M., Wu,J.,Zhu, J.,Wang,H.,Zhang,Z.,Wang,W., Sun,Y.,Zhao, J.,Sun,X., et al. (2009). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21:3767–3780.

[62]

Zhang,N.,Hecht,C., Sun,X.,Fei, Z., and Martin,G. (2022). Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. Plant Physiol. 190:1334–1348.

[63]

Zhao,T.,Rui,L., Li,J.,Nishimura, M.,Vogel,J.,Liu,N.,Liu,S., Zhao,Y.,Dangl, J., and Tang,D. (2015). A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet. 11:e1004945.

[64]

Zhao,Y.,Wu,G., Shi,H., and Tang, D. (2019). RECEPTOR-LIKE KINASE 902 associates with and phosphorylates BRASSINOSTEROID-SIGNALING KINASE1 to regulate plant immunity. Mol. Plant 12:59–70.

[65]

Zhou,X.,Wang,J., Peng,C.,Zhu, X.,Yin,J.,Li,W.,He,M., Wang,J.,Chern, M.,Yuan,C., et al. (2016). Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ. 39:1381–1392.

[66]

Zhou,Z.,Pang,Z., Zhao,S.,Zhang, L.,Lv,Q.,Yin,D.,Li,D., Liu,X.,Zhao, X.,Li,X., et al. (2019). Importance of OsRac1 and RAI1 in signalling of nucleotide-binding site leucine-rich repeat protein-mediated resistance to rice blast disease. New Phytol. 223:828–838.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/