GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane

Li Zhang , Xingpeng Wen , Xin Chen , Yifan Zhou , Kun Wang , Yuxian Zhu

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2632 -2647.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2632 -2647. DOI: 10.1002/jipb.13777
Research Article

GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane

Author information +
History +
PDF

Abstract

Cotton (Gossypium hirsutum) fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall (SCW) thickening, which requires cellulose synthase complex (CSC) activity. Here, we describe the CSC-interacting factor CASPARIAN STRIP MEMBRANE DOMAIN-LIKE1 (GhCASPL1), which contributes to SCW thickening by influencing CSC stability on the plasma membrane. GhCASPL1 is preferentially expressed in fiber cells during SCW biosynthesis and encodes a MARVEL domain protein. The ghcaspl1 ghcaspl2 mutant exhibited reduced plant height and produced mature fibers with fewer natural twists, lower tensile strength, and a thinner SCW compared to the wild type. Similarly, the Arabidopsis (Arabidopsis thaliana) caspl1 caspl2 double mutant showed a lower cellulose content and thinner cell walls in the stem vasculature than the wild type but normal plant morphology. Introducing the cotton gene GhCASPL1 successfully restored the reduced cellulose content of the Arabidopsis caspl1 caspl2 mutant. Detergent treatments, ultracentrifugation assays, and enzymatic assays showed that the CSC in the ghcaspl1 ghcaspl2 double mutant showed reduced membrane binding and decreased enzyme activity compared to the wild type. GhCASPL1 binds strongly to phosphatidic acid (PA), which is present in much higher amounts in thickening fiber cells compared to ovules and leaves. Mutating the PA-binding site in GhCASPL1 resulted in the loss of its colocalization with GhCesA8, and it failed to localize to the plasma membrane. PA may alter membrane structure to facilitate protein–protein interactions, suggesting that GhCASPL1 and PA collaboratively stabilize the CSC. Our findings shed light on CASPL functions and the molecular machinery behind SCW biosynthesis in cotton fibers.

Keywords

cellulose synthase complex (CSC) / cotton fiber / GhCASPL1 / plasma membrane (PM) / secondary cell wall (SCW)

Cite this article

Download citation ▾
Li Zhang, Xingpeng Wen, Xin Chen, Yifan Zhou, Kun Wang, Yuxian Zhu. GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane. Journal of Integrative Plant Biology, 2024, 66(12): 2632-2647 DOI:10.1002/jipb.13777

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bessueille, L.,Sindt, N.,Guichardant, M.,Djerbi, S.,Teeri, T.T., and Bulone, V. (2009). Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. Biochem. J. 420:93–103.

[2]

Blomqvist, M.,Zetterberg, H.,Blennow, K., and Månsson, J.E (2021). Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol. Cell. Neurosci. 116:103670.

[3]

Bringmann, M.,Li, E.,Sampathkumar, A.,Kocabek, T.,Hauser, M.-T., and Persson, S. (2012). POM-POM2/CELLULOSE SYNTHASE INTERACTING1 Is Essential for the Functional Association of Cellulose Synthase and Microtubules in Arabidopsis. Plant Cell 24:163–177.

[4]

Brown, C.,Leijon, F., and Bulone, V. (2012). Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat. Protoc. 7:1634–1650.

[5]

Champeyroux, C.,Bellati, J.,Barberon, M.,Rofidal, V.,Maurel, C., and Santoni, V. (2019). Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like. Plant Cell Environ. 42:1788–1801.

[6]

Chang, J.M.,Di Tommaso, P.,Taly, J.F., and Notredame, C. (2012). Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinformatics 13:S1–S7.

[7]

Dawson, J.,Sözen, E.,Vizir, I.,Van Waeyenberge, S.,Wilson, Z.A., and Mulligan, B.J (1999). Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytol. 144:213–222.

[8]

Desprez, T.,Juraniec, M.,Crowell, E.F.,Jouy, H.,Pochylova, Z.,Parcy, F.,Höfte, H.,Gonneau, M., and Vernhettes, S. (2007). Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104:15572–15577.

[9]

Gao, J.,Huang, G.,Chen, X., and Zhu, Y.X (2022). PROTEIN S-ACYL TRANSFERASE 13/16 modulate disease resistance by S-acylation of the nucleotide binding, leucine-rich repeat protein R5L1 in Arabidopsis. J. Integr. Plant Biol. 64:1789–1802.

[10]

Geldner, N. (2013). The endodermis. Annu. Rev. Plant Biol. 64:531–558.

[11]

Haigler, C.H.,Betancur, L.,Stiff, M.R., and Tuttle, J.R (2012). Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 3:104.

[12]

Harpaz-Saad, S.,McFarlane, H.E.,Xu, S.L.,Divi, U.K.,Forward, B.,Western, T.L., and Kieber, J.J (2011). Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J. 68:941–953.

[13]

Huang, G.,Huang, J.-Q.,Chen, X.-Y., and Zhu, Y.-X. (2021). Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol. 72:437–462.

[14]

Huang, G.,Wu, Z.G.,Percy, R.G.,Bai, M.Z.,Li, Y.,Frelichowski, J.E.,Hu, J.,Wang, K.,Yu, J.Z., and Zhu, Y.X (2020). Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat. Genet. 52:516–524.

[15]

Kushi, Y.,Arita, M.,Ishizuka, I.,Kasama, T.,Fredman, P., and Handa, S. (1996). Sulfatide is expressed in both erythrocytes and platelets of bovine origin. Biochim. Biophys. Acta 1304:254–262.

[16]

Lalanne, E.,Honys, D.,Johnson, A.,Borner, G.H.H.,Lilley, K.S.,Dupree, P.,Grossniklaus, U., and Twell, D. (2004). SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240.

[17]

Li, S.,Lei, L.,Somerville, C.R., and Gu, Y. (2012). Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl. Acad. Sci. U.S.A. 109:185–190.

[18]

Li, T.,Chen, C.,Brozena, A.H.,Zhu, J.Y.,Xu, L.,Driemeier, C.,Dai, J.,Rojas, O.J.,Isogai, A.,Wagberg, L., et al. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature 590:47–56.

[19]

Li, Y.,Xi, W.,Hao, J.F.,Zhang, L.,Wen, X.P.,Wu, Z.G., and Zhu, Y.X (2023). A novel tandem zinc finger protein in Gossypium hirsutum, GhTZF2, interacts with GhMORF8 to regulate cotton fiber cell development. Agronomy 13:1–18.

[20]

Liu, N.J.,Wang, N.,Bao, J.J.,Zhu, H.X.,Wang, L.J., and Chen, X.Y (2020). Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles. Mol. Plant 13:1523–1532.

[21]

Liu, Y.,Su, Y., and Wang, X.M (2013). Lipid-mediated protein signaling. In Advances in Experimental Medicine and Biology. Capelluto, D.G.S., ed, (New York: Springer), pp. 159–176.

[22]

Magal, L.G.,Yaffe, Y.,Shepshelovich, J.,Aranda, J.F.,de Marco, M.D.,Gaus, K.,Alonso, M.A., and Hirschberg, K. (2009). Clustering and lateral concentration of raft lipids by the MAL protein. Mol. Biol. Cell 20:3751–3762.

[23]

Mansoori, N.,Timmers, J.,Desprez, T.,Kamei, C.L.A,Dees, D.C.T,Vincken, J.-P.,Visser, R.G.F,Hoefte, H.,Vernhettes, S., and Trindade, L.M (2014). KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery. PLoS ONE 9:e112387.

[24]

de Marco, M.C.,Martin-Belmonte, F.,Kremer, L.,Albar, J.P.,Correas, I.,Vaerman, J.P.,Marazuela, M.,Byrne, J.A., and Alonso, M.A (2002). MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J. Cell Biol. 159:37–44.

[25]

Miao, H.,Li, B.W.,Wang, Z.H.,Mu, J.M.,Tian, Y.N.,Jiang, B.H.,Zhang, S.H.,Gong, X.,Shui, G.H., and Lam, S.M (2023). Erratum to “Lipidome atlas of the developing heart uncovers dynamic membrane lipid attributes underlying cardiac structural and metabolic maturation”. Research (Wash D C) 6:0185.

[26]

Polko, J.K., and Kieber, J.J (2019). The regulation of cellulose biosynthesis in plants. Plant Cell 31:282–296.

[27]

Purushotham, P.,Ho, R., and Zimmer, J. (2020). Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369:1089–1099.

[28]

Qin, Y.M., and Zhu, Y.X (2011). How cotton fibers elongate: A tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14:106–111.

[29]

Ran, F.A.,Hsu, P.D.,Wright, J.,Agarwala, V.,Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8:2281–2308.

[30]

Roppolo, D.,Boeckmann, B.,Pfister, A.,Boutet, E.,Rubio, M.C.,Denervaud-Tendon, V.,Vermeer, J.E.M,Gheyselinck, J.,Xenarios, I., and Geldner, N. (2014). Functional and evolutionary analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN family. Plant Physiol. 165:1709–1722.

[31]

Roppolo, D.,De Rybel, B.,Tendon, V.D.,Pfister, A.,Alassimone, J.,Vermeer, J.E.M,Yamazaki, M.,Stierhof, Y.-D.,Beeckman, T., and Geldner, N. (2011). A novel protein family mediates Casparian strip formation in the endodermis. Nature 473:380–564.

[32]

Roudier, F.,Fernandez, A.G.,Fujita, M.,Himmelspach, R.,Borner, G.H.H,Schindelman, G.,Song, S.,Baskin, T.I.,Dupree, P.,Wasteneys, G.O., et al. (2005). COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–1763.

[33]

Roudier, F.,Schindelman, G.,DeSalle, R., and Benfey, P.N (2002). The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol. 130:538–548.

[34]

Sanchez-Pulido, L.,Martin-Belmonte, F.,Valencia, A., and Alonso, M.A (2002). MARVEL: A conserved domain involved in membrane apposition events. Trends Biochem. Sci. 27:599–601.

[35]

Scavuzzo-Duggan, T.R.,Chaves, A.M.,Singh, A.,Sethaphong, L.,Slabaugh, E.,Yingling, Y.G.,Haigler, C.H., and Roberts, A.W (2018). Cellulose synthase ‘class specific regions’ are intrinsically disordered and functionally undifferentiated. J. Integr. Plant Biol. 60:481–497.

[36]

Tong, N.N.,Peng, L.P.,Liu, Z.A.,Li, Y.,Zhou, X.Y.,Wang, X.R., and Shu, Q.Y (2021). Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species. Physiol. Plant. 173:961–977.

[37]

Vain, T.,Crowell, E.F.,Timpano, H.,Biot, E.,Desprez, T.,Mansoori, N.,Trindade, L.M.,Pagant, S.,Robert, S.,Hoefte, H., et al. (2014). The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol. 165:1521–1532.

[38]

Wang, D.,Yuan, M.,Zhuang, Y,Xin, X.-F., and Qi, G. (2024). DGK5-mediated phosphatidic acid homeostasis interplays with reactive oxygen species in plant immune signaling. J. Integr. Plant Biol. 66:1263–1265.

[39]

Wang, P.C.,Zhang, J.,Sun, L.,Ma, Y.Z.,Xu, J.,Liang, S.J.,Deng, J.W.,Tan, J.F.,Zhang, Q.H.,Tu, L.L., et al. (2018). High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant. Biotechnol. J. 16:137–150.

[40]

Watanabe, Y.,Meents, M.J.,McDonnell, L.M.,Barkwill, S.,Sampathkumar, A.,Cartwright, H.N.,Demura, T.,Ehrhardt, D.W.,Samuels, A.L., and Mansfield, S.D (2015). Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350:198–203.

[41]

Wen, X.P.,Chen, Z.W.,Yang, Z.R.,Wang, M.J.,Jin, S.X.,Wang, G.D.,Zhang, L.,Wang, L.J.,Li, J.Y.,Saeed, S., et al. (2023). A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci. China: Life Sci. 66:2214–2256.

[42]

Wen, X.P.,Zhai, Y.F.,Zhang, L.,Chen, Y.J.,Zhu, Z.Y.,Chen, G.,Wang, K., and Zhu, Y.X (2022). Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. Sci. China: Life Sci. 65:1776–1793.

[43]

Wightman, R.,Marshall, R., and Turner, S.R (2009). A cellulose synthase-containing compartment moves rapidly beneath sites of secondary wall synthesis. Plant Cell Physiol. 50:584–594.

[44]

Wolf, S. (2022). Cell wall signaling in plant development and defense. Annu. Rev. Plant Biol. 73:323–353.

[45]

Yaffe, Y.,Shepshelovitch, J.,Nevo-Yassaf, I.,Yeheskel, A.,Shmerling, H.,Kwiatek, J.M.,Gaus, K.,Pasmanik-Chor, M., and Hirschberg, K. (2012). The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia. J. Cell Sci. 125:3545–3556.

[46]

Yang, Y.,Niu, Y.,Chen, T.,Zhang, H.K.,Zhang, J.X.,Qian, D.,Bi, M.M.,Fan, Y.M.,An, L.Z., and Xiang, Y. (2022). The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. Plant Cell 34:3718–3736.

[47]

Yao, H.-Y., and Xue, H.-W. (2018). Phosphatidic acid plays key roles regulating plant development and stress responses. J. Integr. Plant Biol. 60:851–863.

[48]

Zhang, B.C.,Gao, Y.H.,Zhang, L.J., and Zhou, Y.H (2021). The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 63:251–272.

[49]

Zhang, J.,Si, Z.F.,Chen, R.,Liu, W.S.,Shi, Y.,Shi, Z.L.,Mei, H.,Hu, Y.,Fang, L., and Zhang, T.Z (2023). A new model system for cotton indoor genetic and genomic research. Sci. China: Life Sci. 66:1444–1446.

[50]

Zhang, Y.,Nikolovski, N.,Sorieul, M.,Vellosillo, T.,McFarlane, H.E.,Dupree, R.,Kesten, C.,Schneider, R.,Driemeier, C.,Lathe, R., et al. (2016). Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nat. Commun. 7:11656.

[51]

Zhu, X.,Li, S.,Pan, S.,Xin, X., and Gu, Y. (2018). CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 115:E3578–E3587.

[52]

Zhukovsky, M.A.,Filograna, A.,Luini, A.,Corda, D., and Valente, C. (2019). Phosphatidic acid in membrane rearrangements. FEBS Lett. 593:2428–2451.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/