Reading m6A marks in mRNA: A potent mechanism of gene regulation in plants

Thi Kim Hang Nguyen , Hunseung Kang

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2586 -2599.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2586 -2599. DOI: 10.1002/jipb.13781
Review Article

Reading m6A marks in mRNA: A potent mechanism of gene regulation in plants

Author information +
History +
PDF

Abstract

Modifications to RNA have recently been recognized as a pivotal regulator of gene expression in living organisms. More than 170 chemical modifications have been identified in RNAs, with N6-methyladenosine (m6A) being the most abundant modification in eukaryotic mRNAs. The addition and removal of m6A marks are catalyzed by methyltransferases (referred to as “writers”) and demethylases (referred to as “erasers”), respectively. In addition, the m6A marks in mRNAs are recognized and interpreted by m6A-binding proteins (referred to as “readers”), which regulate the fate of mRNAs, including stability, splicing, transport, and translation. Therefore, exploring the mechanism underlying the m6A reader-mediated modulation of RNA metabolism is essential for a much deeper understanding of the epigenetic role of RNA modification in plants. Recent discoveries have improved our understanding of the functions of m6A readers in plant growth and development, stress response, and disease resistance. This review highlights the latest developments in m6A reader research, emphasizing the diverse RNA-binding domains crucial for m6A reader function and the biological and cellular roles of m6A readers in the plant response to developmental and environmental signals. Moreover, we propose and discuss the potential future research directions and challenges in identifying novel m6A readers and elucidating the cellular and mechanistic role of m6A readers in plants.

Keywords

epitranscriptomics / m 6A modification / m6A reader / RNA metabolism / YTH

Cite this article

Download citation ▾
Thi Kim Hang Nguyen, Hunseung Kang. Reading m6A marks in mRNA: A potent mechanism of gene regulation in plants. Journal of Integrative Plant Biology, 2024, 66(12): 2586-2599 DOI:10.1002/jipb.13781

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alarcón, C.R.,Goodarzi, H.,Lee, H.,Liu, X.,Tavazoie, S., and Tavazoie, S.F (2015). HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162:1299–1308.

[2]

Amara, U.,Hu, J.,Cai, J., and Kang, H. (2023). FLK is an mRNA m6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis. Mol. Plant 16:919–929.

[3]

Amara, U.,Hu, J.,Park, S.J., and Kang, H. (2024). ECT12, an YTH-domain protein, is a potential mRNA m6A reader that affects abiotic stress responses by modulating mRNA stability in Arabidopsis. Plant Physiol. Biochem. 206:108255.

[4]

Amara, U.,Shoaib, Y., and Kang, H. (2022). ALKBH9C, a potential RNA m6A demethylase, regulates the response of Arabidopsis to abiotic stresses and abscisic acid. Plant Cell Environ. 45:3566–3581.

[5]

Arribas-Hernández, L.,Bressendorff, S.,Hansen, M.H.,Poulsen, C.,Erdmann, S., and Brodersen, P. (2018). An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. Plant Cell 30:952–967.

[6]

Arribas-Hernández, L.,Rennie, S.,Köster, T.,Porcelli, C.,Lewinski, M.,Staiger, D.,Andersson, R., and Brodersen, P. (2021a). Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2. eLife 10:e72375.

[7]

Arribas-Hernández, L.,Rennie, S.,Schon, M.,Porcelli, C.,Enugutti, B.,Andersson, R.,Nodine, M.D., and Brodersen, P. (2021b). The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation. eLife 10:e72377.

[8]

Arribas-Hernández, L.,Simonini, S.,Hansen, M.H.,Paredes, E.B.,Bressendorff, S.,Dong, Y.,Østergaard, L., and Brodersen, P. (2020). Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis. Development 147:dev189134.

[9]

Batista, P.J.,Molinie, B.,Wang, J.,Qu, K.,Zhang, J.,Li, L.,Bouley, D.M.,Lujan, E.,Haddad, B., and Daneshvar, K. (2014). m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719.

[10]

Bian, H.,Song, P.,Gao, Y.,Deng, Z.,Huang, C.,Yu, L.,Wang, H.,Ye, B.,Cai, Z.,Pan, Y., et al. (2024). The m6A reader SlYTH2 negatively regulates tomato fruit aroma by impeding the translation process. Proc. Natl. Acad. Sci. U.S.A. 121:e2405100121.

[11]

Boccaletto, P.,Stefaniak, F.,Ray, A.,Cappannini, A.,Mukherjee, S.,Purta, E.,Kurkowska, M.,Shirvanizadeh, N.,Destefanis, E.,Groza, P., et al. (2022). MODOMICS: A database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50:D231–D235.

[12]

Bodi, Z.,Zhong, S.,Mehra, S.,Song, J.,Graham, N.,Li, H.,May, S., and Fray, R.G (2012). Adenosine methylation in Arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects. Front. Plant Sci. 3:48.

[13]

Cai, J.,Hu, J.,Xu, T., and Kang, H. (2024a). FIONA1-mediated mRNA m6A methylation regulates the response of Arabidopsis to salt stress. Plant Cell Environ. 47:900–912.

[14]

Cai, J.,Hu, J.,Amara, U.,Park, S.J.,Li, Y.,Jeong, D.,Lee, I.,Xu, T., and Kang, D. (2023). Arabidopsis N6-methyladenosine methyltransferase FIONA1 regulates floral transition by affecting the splicing of FLC and the stability of floral activators SPL3 and SEP3. J. Exp. Bot. 74:864–877.

[15]

Cai, Z.,Tang, Q.,Song, P.,Tian, E.,Yang, J., and Jia, G. (2024b). The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. Plant Cell 36:2908–2926.

[16]

Chen, L.,Fu, Y.,Hu, Z.,Deng, K.,Song, Z.,Liu, S.,Li, M.,Ou, X.,Wu, R.,Liu, M., et al. (2022). Nuclear m6A reader YTHDC1 suppresses proximal alternative polyadenylation sites by interfering with the 3’ processing machinery. EMBO Rep. 23:e54686.

[17]

Chen, J.-J.,Lu, T.-Z.,Wang, T.,Yan, W.-H.,Zhong, F.-Y.,Qu, X.-H.,Gong, X.-C.,Li, J.-G.,Tou, F.-F.,Jiang, L.-P., et al. (2024). The m6A reader HNRNPC promotes glioma progression by enhancing the stability of IRAK1 mRNA through the MAPK pathway. Cell Death Dis. 15:390.

[18]

Cui, C.,Ma, Z.,Wan, H.,Gao, J., and Zhou, B. (2022). GhALKBH10 negatively regulates salt tolerance in cotton. Plant Physiol. Biochem. 192:87–100.

[19]

Cui, S.,Song, P.,Wang, C.,Chen, S.,Hao, B.,Xu, Z.,Cai, L.,Chen, X.,Zhu, S.,Gan, X., et al. (2024). The RNA binding protein EHD6 recruits the m6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. Mol. Plant 17:935–954.

[20]

Du, H.,Zhao, Y.,He, J.,Zhang, Y.,Xi, H.,Liu, M.,Ma, J., and Wu, L. (2016). YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7:12626.

[21]

Duan, H.-C.,Wei, L.-H.,Zhang, C.,Wang, Y.,Chen, L.,Lu, Z.,Chen, P.R.,He, C., and Jia, G. (2017). ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell 29:2995–3011.

[22]

Edupuganti, R.R.,Geiger, S.,Lindeboom, R.G.H,Shi, H.,Hsu, P.J.,Lu, Z.,Wang, S.-Y.,Baltissen, M.P.A,Jansen, P.W.T.C.,Rossa, M., et al. (2017). N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24:870–878.

[23]

Field, S.,Jang, G.-J.,Dean, C.,Strader, L.C., and Rhee, S.Y (2023). Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. Plant Cell 35:3173–3186.

[24]

Flores-Téllez, D.,Tankmar, M.D.,Von Bülow, S.,Chen, J.,Lindorff-Larsen, K.,Brodersen, P., and Arribas-Hernández, L. (2023). Insights into the conservation and diversification of the molecular functions of YTHDF proteins. PLoS Genet. 19:e1010980.

[25]

Fu, Y., and Zhuang, X. (2020). m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16:955–963.

[26]

Geuens, T.,Bouhy, D., and Timmerman, V. (2016). The hnRNP family: Insights into their role in health and disease. Hum. Genet. 135:851–867.

[27]

Guo, T.,Liu, C.,Meng, F.,Hu, L.,Fu, X.,Yang, Z.,Wang, N.,Jiang, Q.,Zhang, X., and Ma, F. (2022). The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnol. J. 20:511–525.

[28]

Hofmann, S.,Kedersha, N.,Anderson, A., and Ivanov, P. (2021). Molecular mechanisms of stress granule assembly and disassembly. Biochim. Biophys. Acta Mol. Cell Res. 1868:118876.

[29]

Hou, Y.,Sun, J.,Wu, B.,Gao, Y.,Nie, H.,Nie, Z.,Quan, S.,Wang, Y.,Cao, X., and Li, S. (2021). CPSF30-L-mediated recognition of mRNA m6A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis. Mol. Plant 14:688–699.

[30]

Hsu, P.J.,Zhu, Y.,Ma, H.,Guo, Y.,Shi, X.,Liu, Y.,Qi, M.,Lu, Z.,Shi, H.,Wang, J., et al. (2017). Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127.

[31]

Hu, J.,Cai, J.,Park, S.J.,Lee, K.,Li, Y.,Chen, Y.,Yun, J.-Y.,Xu, T., and Kang, H. (2021). N6-methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J. 106:1759–1775.

[32]

Hu, J.,Cai, J.,Xu, T., and Kang, H. (2022). Epitranscriptomic mRNA modifications governing plant stress responses: Underlying mechanism and potential application. Plant Biotechnol. J. 20:2245–2257.

[33]

Hu, J.,Xu, T., and Kang, H. (2024). Crosstalk between RNA m6A modification and epigenetic factors for plant gene regulation. Plant Commun. 5:101037.

[34]

Huang, H.,Weng, H.,Sun, W.,Qin, X.,Shi, H.,Wu, H.,Zhao, B.S.,Mesquita, A.,Liu, C.,Yuan, C.L., et al. (2018). Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20:285–295.

[35]

Kang, H., and Xu, T. (2023). N6-methyladenosine RNA methylation modulates liquid-liquid phase separation in plants. Plant Cell 35:3205–3213.

[36]

Kasowitz, S.D.,Ma, J.,Anderson, S.J.,Leu, N.A.,Xu, Y.,Gregory, B.D.,Schultz, R.M., and Wang, P.J (2018). Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14:e1007412.

[37]

Kretschmer, J.,Rao, H.,Hackert, P.,Sloan, K.E.,Höbartner, C., and Bohnsack, M.T (2018). The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5’–3’ exoribonuclease XRN1. RNA 24:1339–1350.

[38]

Lee, H.G.,Kim, J., and Seo, P.J (2022). N6-methyladenosine–modified RNA acts as a molecular glue that drives liquid–liquid phase separation in plants. Plant Signal. Behav. 17:2079308.

[39]

Lee, K.P.,Liu, K.,Kim, E.Y.,Medina-Puche, L.,Dong, H.,Di, M.,Singh, R.M.,Li, M.,Qi, S.,Meng, Z., et al. (2024). The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis. Plant Cell 36:746–763.

[40]

Li, A.,Chen, Y.-S.,Ping, X.-L.,Yang, X.,Xiao, W.,Yang, Y.,Sun, H.-Y.,Zhu, Q.,Baidya, P.,Wang, X., et al. (2017). Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–447.

[41]

Li, F.,Zhao, D.,Wu, J., and Shi, Y. (2014). Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24:1490–1492.

[42]

Liao, S.,Sun, H., and Xu, C. (2018). YTH domain: A family of N6-methyladenosine (m6A) readers. Genom. Proteom. Bioinform. 16:99–107.

[43]

Liu, Y.,Do, S.,Huynh, H.,Li, J.-X.,Liu, Y.-G.,Du, Z.-Y., and Chen, M.-X. (2024). Importance of pre-mRNA splicing and its study tools in plants. Adv. Biotechnol. 2:4.

[44]

Liu, J.,Gao, M.,Xu, S.,Chen, Y.,Wu, K.,Liu, H.,Wang, J.,Yang, X.,Wang, J.,Liu, W., et al. (2020). YTHDF2/3 are required for somatic reprogramming through different RNA deadenylation pathways. Cell Rep. 32:108120.

[45]

Lorković Z.J.,Kirk, D.A.W,Lambermon, M.H.L, and Filipowicz, W. (2000). Pre-mRNA splicing in higher plants. Trends Plant Sci. 5:1360–1385.

[46]

Luo, J.-H.,Wang, Y.,Wang, M.,Zhang, L.-Y.,Peng, H.-R.,Zhou, Y.-Y.,Jia, G.-F., and He, Y. (2020). Naturnal variation in RNA m6A methylation and its relationship with translational status. Plant Physiol. 182:332–344.

[47]

Martínez-Pérez, M.,Aparicio, F.,López-Gresa, M.P.,Bellés, J.M.,Sánchez-Navarro, J.A., and Pallás, V. (2017). Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc. Natl. Acad. Sci. U.S.A. 114:10755–10760.

[48]

Martínez-Pérez, M.,Aparicio, F.,Arribas-Hernández, L.,Tankmar, M.D.,Rennie, S.,von Bülow, S.,Lindorff-Larsen, K.,Brodersen, P., and Pallas, V. (2023). Plant YTHDF proteins are direct effectors of antiviral immunity against an N6-methyladenosine-containing RNA virus. EMBO J. 42:e113378.

[49]

McMahon, A.C.,Rahman, R.,Jin, H.,Shen, J.L.,Fieldsend, A.,Luo, W., and Rosbash, M. (2016). TRIBE: Hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165:742–753.

[50]

Meyer, K.D (2019). DART-seq: An antibody-free method for global m6A detection. Nat. Methods 16:1275–1280.

[51]

Meyer, K.D.,Patil, D.P.,Zhou, J.,Zinoviev, A.,Skabkin, M.A.,Elemento, O.,Pestova, T.V.,Qian, S.B., and Jaffrey, S.R (2015). 5’ UTR m6A promotes cap-independent translation. Cell 163:999–1010.

[52]

Ok, S.H.,Jeong, H.J.,Bae, J.M.,Shin, J.-S.,Luan, S., and Kim, K.-N. (2005). Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization. Plant Physiol. 139:138–150.

[53]

Ouyang, Z.,Duan, H.,Mi, L.,Hu, W.,Chen, J.,Li, X., and Zhong, B. (2019). Genome-wide identification and expression analysis of the YTH domain-containing RNA-binding protein family in Citrus Sinensis. J. Am. Soc. Hortic. Sci. 144:79–91.

[54]

Parker, M.T.,Soanes, B.K.,Kusakina, J.,Larrieu, A.,Knop, K.,Joy, N.,Breidenbach, F.,Sherwood, A.V.,Barton, G.J.,Fica, S.M., et al. (2022). m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5’-splice site. eLife 11:e78808.

[55]

Patil, D.P.,Pickering, B.F., and Jaffrey, S.R (2018). Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28:113–127.

[56]

Prall, W.,Ganguly, D.R., and Gregory, B.D (2023). The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future. Plant Cell 35:1801–1816.

[57]

Rauch, S.,He, C., and Dickinson, B.C (2018). Targeted m6A reader proteins to study epitranscriptomic regulation of single RNAs. J. Am. Chem. Soc. 140:11974–11981.

[58]

Ries, R.J.,Zaccara, S.,Klein, P.,Olarerin-George, A.,Namkoong, S.,Pickering, B.F.,Patil, D.P.,Kwak, H.,Lee, J.H., and Jaffrey, S.R (2019). m6A enhances the phase separation potential of mRNA. Nature 571:424–428.

[59]

Rodriguez, G.F.,Cesaro, B., and Fatica, A. (2022). Multiple roles of m6A RNA modification in translational regulation in cancer. Int. J. Mol. Sci. 11:8971.

[60]

Roundtree, I.A.,Luo, G.Z.,Zhang, Z.,Wang, X.,Zhou, T.,Cui, Y.,Sha, J.,Huang, X.,Guerrero, L.,Xie, P., et al. (2017). YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6:e31311.

[61]

Růžička, K.,Zhang, M.,Campilho, A.,Bodi, Z.,Kashif, M.,Saleh, M.,Eeckhout, D.,El-Showk, S.,Li, H.,Zhong, S., et al. (2017). Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 215:157–172.

[62]

Scutenaire, J.,Deragon, J.-M.,Jean, V.,Benhamed, M.,Raynaud, C.,Favory, J.-J.,Merret, R., and Bousquet-Antonelli, C. (2018). The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell 30:986–1005.

[63]

Shi, H.,Wang, X.,Lu, Z.,Zhao, B.S.,Ma, H.,Hsu, P.J.,Liu, C., and He, C. (2017). YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328.

[64]

Sikorski, V.,Selberg, S.,Lalowski, M.,Karelson, M., and Kankuri, E. (2023). The structure and function of YTHDF epitranscriptomic m6A readers. Trends Pharmacol. Sci. 44:335–353.

[65]

Solis-Miranda, J.,Chodasiewicz, M.,Skirycz, A.,Fernie, A.R.,Moschou, P.N.,Bozhkov, P.V., and Gutierrez-Beltran, E. (2023). Stress-related biomolecular condensates in plants. Plant Cell 35:3187–3204.

[66]

Song, P.,Wei, L.,Chen, Z.,Cai, Z.,Lu, Q.,Wang, C.,Tian, E., and Jia, G. (2023). m6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biol. 24:103.

[67]

Song, P.,Yang, J.,Wang, C.,Lu, Q.,Shi, L.,Tayier, S., and Jia, G. (2021). Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Mol. Plant 14:571–587.

[68]

Stowell, J.A.,Wagstaff, J.L.,Hill, C.H.,Yu, M.,McLaughlin, S.H.,Freund, S.M., and Passmore, L.A (2018). A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding. J. Biol. Chem. 293:9210–9222.

[69]

Tang, J.,Chen, S., and Jia, G. (2023). Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Commun 4:100546.

[70]

Tang, J.,Lei, D.,Yang, J.,Chen, S.,Wang, X.,Huang, X.,Zhang, S.,Cai, Z.,Zhu, S.,Wan, J., et al. (2024). OsALKBH9-mediated m6A demethylation regulates tapetal PCD and pollen exine accumulation in rice. Plant Biotechnol. J. 22:2410–2423.

[71]

Tang, J.,Yang, J.,Duan, H., and Jia, G. (2021). ALKBH10B, an mRNA m6A demethylase, modulates ABA response during seed germination in Arabidopsis. Front. Plant Sci. 12:712713.

[72]

Tang, J.,Yang, J.,Lu, Q.,Tang, Q.,Chen, S., and Jia, G. (2022). The RNA N6-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis. J. Integr. Plant Biol. 64:2361–2373.

[73]

Tankmar, M.D.,Reichel, M.,Arribas-Herńandez, L., and Brodersen, P. (2023). A YTHDF–PABP interaction is required for m6A-mediated organogenesis in plants. EMBO Rep. 24:e57741.

[74]

Theler, D.,Dominguez, C.,Blatter, M.,Boudet, J., and Allain, F.H.-T. (2014). Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Res. 42:13911–13919.

[75]

Valášek, L.S.,Zeman, J.,Wagner, S.,Beznosková P.,Pavlíková Z.,Mohammad, M.P.,Hornová V.,Herrmannová A.,Hashem, Y., and Gunišová S. (2017). Embraced by eIF3: Structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res. 45:10948–10968.

[76]

Wang, C.,Yang, J.,Song, P.,Zhang, W.,Lu, Q.,Yu, Q., and Jia, G. (2022). FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering. Genome Biol. 23:40.

[77]

Wang, C.,Zhu, Y.,Bao, H.,Jiang, Y.,Xu, C.,Wu, J., and Shi, Y. (2016). A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Nucleic Acids Res. 44:969–982.

[78]

Wang, H.,Niu, R.,Zhou, Y.,Tang, Z.,Xu, G., and Zhou, G. (2023a). ECT9 condensates with ECT1 and regulates plant immunity. Front. Plant Sci. 14:1140840.

[79]

Wang, X.,Lu, Z.,Gomez, A.,Hon, G.C.,Yue, Y.,Han, D.,Fu, Y.,Parisien, M.,Dai, Q.,Jia, G., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120.

[80]

Wang, X.,Zhao, B.S.,Roundtree, I.A.,Lu, Z.,Han, D.,Ma, H.,Weng, X.,Chen, K.,Shi, H., and He, C. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399.

[81]

Wang, S.,Wang, H.,Xu, Z.,Jiang, S.,Shi, Y.,Xie, H.,Wang, S.,Hua, J., and Wu, Y. (2023b). m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis. Plant Physiol. 192:1466–1482.

[82]

Wei, L.-H.,Song, P.,Wang, Y.,Lu, Z.,Tang, Q.,Yu, Q.,Xiao, Y.,Zhang, X.,Duan, H.-C., and Jia, G. (2018). The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell 30:968–985.

[83]

Wu, J.,Peled-Zehavi, H., and Galili, G. (2020). The m6A reader ECT2 post-transcriptionally regulates proteasome activity in Arabidopsis. New Phytol. 228:151–162.

[84]

Wu, B.,Xu, J.,Su, S.,Liu, H.,Gan, J., and Ma, J. (2017). Structural insights into the specific recognition of DSR by the YTH domain containing protein Mmi1. Biochem. Biophys. Res. Commun. 491:310–316.

[85]

Wu, X.,Su, T.,Zhang, S.,Zhang, Y.,Wong, C.E.,Ma, J.,Shao, Y.,Hua, C.,Shen, L., and Yu, H. (2024). N6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. Nat. Plants 10:469–482.

[86]

Xiao, W.,Adhikari, S.,Dahal, U.,Chen, Y.-S.,Hao, Y.-J.,Sun, B.-F.,Sun, H.-Y.,Li, A.,Ping, X.-L.,Lai, W.-Y., et al. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61:507–519.

[87]

Xu, C.,Wang, X.,Liu, K.,Roundtree, I.A.,Tempel, W.,Li, Y.,Lu, Z.,He, C., and Min, J. (2014). Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 10:927–929.

[88]

Xu, T.,Wu, X.W.,Wong, C.E.,Fan, S.,Zhang, Y.,Zhang, S.,Liang, Z.,Yu, H., and Shen, L. (2022). FIONA1-mediated m6A modification regulates the floral transition in Arabidopsis. Adv. Sci. 9:e2103628.

[89]

Yin, S.,Ao, Q.,Tan, C., and Yang, Y. (2021). Genome-wide identification and characterization of YTH domain-containing genes, encoding the m6A readers, and their expression in tomato. Plant Cell Rep. 40:1229–1245.

[90]

Yin, S.,Ao, Q.,Qiu, T.,Tan, C.,Tu, Y.,Kuang, T., and Yang, Y. (2022). Tomato SlYTH1 encoding a putative RNA m6A reader affects plant growth and fruit shape. Plant Sci. 323:111417.

[91]

Yue, Y.,Liu, J.,Cui, X.,Cao, J.,Luo, G.,Zhang, Z.,Cheng, T.,Gao, M.,Shu, X.,Ma, H., et al. (2018). VIRMA mediates preferential m6A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:10.

[92]

Yue, J.,Wei, Y., and Zhao, M. (2022). The reversible methylation of m6A is involved in plant virus infection. Biology 11:271.

[93]

Zhang, Y.,Guo, T.,Li, J.,Jiang, L., and Wang, N. (2024). Tomato (Solanum lycopersicum L.) YTH domain-containing RNA-binding protein (YTP) family members participate in low-temperature treatment and waterlogging stress responses. Horticulturae 10:522.

[94]

Zhang, M.,Bodi, Z.,Mackinnon, K.,Zhong, S.,Archer, N.,Mongan, N.P.,Simpson, G.G., and Fray, R.G (2022). Two zinc finger proteins with functions in m6A writing interact with HAKAI. Nat. Commun. 13:1127.

[95]

Zhang, Z.,Theler, D.,Kaminska, K.H.,Hiller, M.,de la Grange, P.,Pudimat, R.,Rafalska, I.,Heinrich, B.,Bujnicki, J.M.,Allain, F.H.-T., et al. (2010). The YTH domain is a novel RNA binding domain. J. Biol. Chem. 285:14701–14710.

[96]

Zhong, S.,Li, H.,Bodi, Z.,Button, J.,Vespa, L.,Herzog, M., and Fray, R.G (2008). MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20:1278–1288.

[97]

Zhou, L.,Gao, G.,Tang, R.,Wang, W.,Wang, Y.,Tian, T., and Qin, G. (2022). m6A-mediated regulation of crop development and stress responses. Plant Biotech. J. 20:1447–1455.

[98]

Zhou, K.I.,Shi, H.,Lyu, R.,Wylder, A.C.,Matuszek, Ż.,Pan, J.N.,He, C.,Parisien, M., and Pan, T. (2019b). Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76:70–81.

[99]

Zhou, L.,Tian, S., and Qin, G. (2019a). RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol. 20:156.

[100]

Zhu, T.,Roundtree, I.A.,Wang, P.,Wang, X.,Wang, L.,Sun, C.,Tian, Y.,Li, J.,He, C., and Xu, Y. (2014). Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–1496.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/