The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification

Haiyan Bai , Yanghuan Dai , Panting Fan , Yiming Zhou , Xiangying Wang , Jingjing Chen , Yuzhe Jiao , Chang Du , Zhuoxi Huang , Yuting Xie , Xiaoyu Guo , Xiaoqiang Lang , Yongqing Ling , Yizhen Deng , Qi Liu , Shengbo He , Zhonghui Zhang

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2613 -2631.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (12) : 2613 -2631. DOI: 10.1002/jipb.13770
Research Article

The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification

Author information +
History +
PDF

Abstract

In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.

Keywords

liquid–liquid phase separation / microRNA biogenesis / MTB / RNA m 6A modification / SE

Cite this article

Download citation ▾
Haiyan Bai, Yanghuan Dai, Panting Fan, Yiming Zhou, Xiangying Wang, Jingjing Chen, Yuzhe Jiao, Chang Du, Zhuoxi Huang, Yuting Xie, Xiaoyu Guo, Xiaoqiang Lang, Yongqing Ling, Yizhen Deng, Qi Liu, Shengbo He, Zhonghui Zhang. The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification. Journal of Integrative Plant Biology, 2024, 66(12): 2613-2631 DOI:10.1002/jipb.13770

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alarcón, C.R.,Goodarzi, H.,Lee, H.,Liu, X.,Tavazoie, S., and Tavazoie, S.F (2015a). HNRNPA2B1 ss a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308.

[2]

Alarcón, C.R.,Lee, H.,Goodarzi, H.,Halberg, N., and Tavazoie, S.F (2015b). N6-methyladenosine marks primary microRNAs for processing. Nature 519:482–485.

[3]

Alberti, S., and Hyman, A.A (2021). Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22:196–213.

[4]

Bajczyk, M.,Lange, H.,Bielewicz, D.,Szewc, L.,Bhat, S.S.,Dolata, J.,Kuhn, L.,Szweykowska-Kulinska, Z.,Gagliardi, D., and Jarmolowski, A. (2020). SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis. Nucleic Acids Res. 48:6839–6854.

[5]

Bhat, S.S.,Bielewicz, D.,Gulanicz, T.,Bodi, Z.,Yu, X.,Anderson, S.J.,Szewc, L.,Bajczyk, M.,Dolata, J.,Grzelak, N., et al. (2020). mRNA adenosine methylase (MTA) deposits m(6)A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 117:21785–21795.

[6]

Bodi, Z.,Zhong, S.,Mehra, S.,Song, J.,Graham, N.,Li, H.,May, S., and Fray, R.G (2012). Adenosine methylation in Arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects. Front. Plant Sci. 3:48.

[7]

Buttress, T.,He, S.,Wang, L.,Zhou, S.,Saalbach, G.,Vickers, M.,Li, G.,Li, P., and Feng, X. (2022). Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature 611:614–622.

[8]

Despres, B.,Delseny, M., and Devic, M. (2001). Partial complementation of embryo defective mutations: A general strategy to elucidate gene function. Plant J. 27:149–159.

[9]

Duan, H.C.,Wei, L.H.,Zhang, C.,Wang, Y.,Chen, L.,Lu, Z.,Chen, P.R.,He, C., and Jia, G. (2017). ALKBH10B is an RNA N(6)-methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell 29:2995–3011.

[10]

Fang, X.,Cui, Y.,Li, Y., and Qi, Y. (2015). Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat. Plants 1:15075.

[11]

Grigg, S.P.,Canales, C.,Hay, A., and Tsiantis, M. (2005). SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437:1022–1026.

[12]

Hirose, T.,Ninomiya, K.,Nakagawa, S., and Yamazaki, T. (2023). A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24:288–304.

[13]

Hou, Y.,Sun, J.,Wu, B.,Gao, Y.,Nie, H.,Nie, Z.,Quan, S.,Wang, Y.,Cao, X., and Li, S. (2021). CPSF30-L-mediated recognition of mRNA m(6)A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis. Mol. Plant 14:688–699.

[14]

Kim, Y.J.,Zheng, B.,Yu, Y.,Won, S.Y.,Mo, B., and Chen, X. (2011). The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 30:814–822.

[15]

Laubinger, S.,Sachsenberg, T.,Zeller, G.,Busch, W.,Lohmann, J.U.,Ratsch, G., and Weigel, D. (2008). Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 105:8795–8800.

[16]

Li, H.,Li, T.,Li, Y.,Bai, H.,Dai, Y.,Liao, Y.,Wei, J.,Shen, W.,Zheng, B.,Zhang, Z., et al. (2023). The plant FYVE domain-containing protein FREE1 associates with microprocessor components to repress miRNA biogenesis. EMBO Rep. 24:e55037.

[17]

Li, Q.,Liu, N.,Liu, Q.,Zheng, X.,Lu, L.,Gao, W.,Liu, Y.,Liu, Y.,Zhang, S.,Wang, Q., et al. (2021). DEAD-box helicases modulate dicing body formation in Arabidopsis. Sci. Adv. 7:eabc6266.

[18]

Li, S.,Li, M.,Liu, K.,Zhang, H.,Zhang, S.,Zhang, C., and Yu, B. (2020). MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc. Natl. Acad. Sci. U.S.A. 117:23982–23990.

[19]

Li, S.,Liu, K.,Zhou, B.,Li, M.,Zhang, S.,Zeng, L.,Zhang, C., and Yu, B. (2018). MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell 30:481–494.

[20]

Liu, J.,Yue, Y.,Han, D.,Wang, X.,Fu, Y.,Zhang, L.,Jia, G.,Yu, M.,Lu, Z.,Deng, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10:93–95.

[21]

Liu, N.,Zhou, K.I.,Parisien, M.,Dai, Q.,Diatchenko, L., and Pan, T. (2017). N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–6063.

[22]

Liu, Q., and Gregory, R.I (2019). RNAmod: An integrated system for the annotation of mRNA modifications. Nucleic Acids Res. 47:W548–W555.

[23]

Lobbes, D.,Rallapalli, G.,Schmidt, D.D.,Martin, C., and Clarke, J. (2006). SERRATE: A new player on the plant microRNA scene. EMBO Rep. 7:1052–1058.

[24]

Luo, G.Z.,MacQueen, A.,Zheng, G.,Duan, H.,Dore, L.C.,Lu, Z.,Liu, J.,Chen, K.,Jia, G.,Bergelson, J., et al. (2014). Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun. 5:5630.

[25]

Ma, Z.,Castillo-Gonzalez, C.,Wang, Z.,Sun, D.,Hu, X.,Shen, X.,Potok, M.E., and Zhang, X. (2018). Arabidopsis serrate coordinates histone methyltransferases ATXR5/6 and RNA processing factor RDR6 to regulate transposon expression. Dev. Cell 45:769–784 e766.

[26]

Meng, J.,Cui, X.,Rao, M.K.,Chen, Y., and Huang, Y. (2013). Exome-based analysis for RNA epigenome sequencing data. Bioinformatics 29:1565–1567.

[27]

Molliex, A.,Temirov, J.,Lee, J.,Coughlin, M.,Kanagaraj, Anderson, P.,Kim, Hong, J.,Mittag, T., and Taylor, J.P (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133.

[28]

Park, W.,Li, J.,Song, R.,Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12:1484–1495.

[29]

Patel, A.,Lee, Hyun, O.,Jawerth, L.,Maharana, S.,Jahnel, M.,Hein, Marco, Y.,Stoynov, S.,Mahamid, J.,Saha, S.,Franzmann, TM., et al. (2015). A Liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077.

[30]

Ping, X.L.,Sun, B.F.,Wang, L.,Xiao, W.,Yang, X.,Wang, W.J.,Adhikari, S.,Shi, Y.,Lv, Y.,Chen, Y.S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189.

[31]

Quinlan, A.R., and Hall, I.M (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842.

[32]

Raczynska, K.D.,Stepien, A.,Kierzkowski, D.,Kalak, M.,Bajczyk, M.,McNicol, J.,Simpson, C.G.,Szweykowska-Kulinska, Z.,Brown, J.W., and Jarmolowski, A. (2014). The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 42:1224–1244.

[33]

Ren, G.,Xie, M.,Dou, Y.,Zhang, S.,Zhang, C., and Yu, B. (2012). Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109:12817–12821.

[34]

Roundtree, I.A.,Luo, G.Z.,Zhang, Z.,Wang, X.,Zhou, T.,Cui, Y.,Sha, J.,Huang, X.,Guerrero, L.,Xie, P., et al. (2017). YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6:e31311.

[35]

Ruzicka, K.,Zhang, M.,Campilho, A.,Bodi, Z.,Kashif, M.,Saleh, M.,Eeckhout, D.,El-Showk, S.,Li, H.,Zhong, S., et al. (2017). Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 215:157–172.

[36]

Shang, B.,Wang, L.,Yan, X.,Li, Y.,Li, C.,Wu, C.,Wang, T.,Guo, X.,Choi, S.W.,Zhang, T., et al. (2023). Intrinsically disordered proteins SAID1/2 condensate on SERRATE for dual inhibition of miRNA biogenesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 120:e2216006120.

[37]

Shen, L. (2023). Functional interdependence of N6-methyladenosine methyltransferase complex subunits in Arabidopsis. Plant Cell 35:1901–1916.

[38]

Shen, L.,Liang, Z.,Gu, X.,Chen, Y.,Teo, Z.W.,Hou, X.,Cai, W.M.,Dedon, P.C.,Liu, L., and Yu, H. (2016). N(6)—Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev. Cell 38:186–200.

[39]

Spector, D.L (2006). SnapShot: Cellular bodies. Cell 127:1071.

[40]

Speth, C.,Szabo, E.X.,Martinho, C.,Collani, S.,Zur Oven-Krockhaus, S.,Richter, S.,Droste-Borel, I.,Macek, B.,Stierhof, Y.D.,Schmid, M., et al. (2018). Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. eLife 7:e37078.

[41]

Tsukaya, H., and Uchimiya, H. (1997). Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: Combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Mol. Gen. Genet. 256:231–238.

[42]

Tzafrir, I.,Pena-Muralla, R.,Dickerman, A.,Berg, M.,Rogers, R.,Hutchens, S.,Sweeney, T.C.,McElver, J.,Aux, G.,Patton, D., et al. (2004). Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135:1206–1220.

[43]

Vaucheret, H.,Vazquez, F.,Crete, P., and Bartel, D.P (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18:1187–1197.

[44]

Vazquez, F.,Gasciolli, V.,Crété P., and Vaucheret, H. (2004). The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14:346–351.

[45]

Wang, X.,Jiang, B.,Gu, L.,Chen, Y.,Mora, M.,Zhu, M.,Noory, E.,Wang, Q., and Lin, C. (2021). A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat. Plants 7:1397–1408.

[46]

Wang, Z.,Ma, Z.,Castillo-Gonzalez, C.,Sun, D.,Li, Y.,Yu, B.,Zhao, B.,Li, P., and Zhang, X. (2018). SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature 557:516–521.

[47]

Wei, L.H.,Song, P.,Wang, Y.,Lu, Z.,Tang, Q.,Yu, Q.,Xiao, Y.,Zhang, X.,Duan, H.C., and Jia, G. (2018). The m(6)A reader ECT2 controls trichome morphology by affecting mRNA atability in Arabidopsis. Plant Cell 30:968–985.

[48]

Xie, D.,Chen, M.,Niu, J.,Wang, L.,Li, Y.,Fang, X.,Li, P., and Qi, Y. (2021). Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat. Cell Biol. 23:32–39.

[49]

Yang, L.,Liu, Z.,Lu, F.,Dong, A., and Huang, H. (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 47:841–850.

[50]

Zhang, B.,You, C.,Zhang, Y.,Zeng, L.,Hu, J.,Zhao, M., and Chen, X. (2020). Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat. Plants 6:957–969.

[51]

Zhang, N.,Zhang, D.,Chen, S.L.,Gong, B.Q.,Guo, Y.,Xu, L.,Zhang, X.N., and Li, J.F (2018). Engineering artificial microRNAs for multiplex gene silencing and simplified transgenic Screen. Plant Physiol. 178:989–1001.

[52]

Zhao, G.,Niu, J.,Hai, Z.,Li, T.,Xie, D.,Li, Y., and Qi, Y. (2023). Peptidyl-prolyl isomerase Cyclophilin71 promotes SERRATE phase separation and miRNA processing in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 120:e2305244120.

[53]

Zhong, S.,Li, H.,Bodi, Z.,Button, J.,Vespa, L.,Herzog, M., and Fray, R.G (2008). MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20:1278–1288.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/