Genetically-targeted control of the spinal cord and peripheral nervous system

Anakaren Romero Lozano , Victoria Koptelova , Zoya Ahmad , Huiliang (Evan) Wang

Journal of Intelligent Medicine ›› 2025, Vol. 2 ›› Issue (1) : 7 -26.

PDF
Journal of Intelligent Medicine ›› 2025, Vol. 2 ›› Issue (1) : 7 -26. DOI: 10.1002/jim4.70001
REVIEW

Genetically-targeted control of the spinal cord and peripheral nervous system

Author information +
History +
PDF

Abstract

Genetically-targeted neuromodulation, such as opto- or chemogenetics, is important for cell-type specific neuromodulation for different applications. Modulating peripheral nerves is a daunting task due to the wide variety of constraints in the periphery, such as size, location, and relative distance to other nerves. This has resulted in many researchers developing innovative solutions to modulate peripheral nerves, including different types of light-emitting devices for optogenetics, different ligands and designer drugs (DREADDs) for chemogenetics, and use of nanotechnology. Although the spinal cord is part of the central nervous system, it is often a site of stimulation for the modulating function in the periphery and the anatomy of the spinal cord has many of the same obstacles for modulation as peripheral nerves. This review summarizes current efforts in genetically-targeted neuromodulation of the spinal cord and peripheral nerves. This review is grouped by applications, going through major areas in which advancements for peripheral neuromodulation have been made. We focus on in vivo research in rodents but also briefly discuss current work in nonhuman primates (NHPs). Some of the major obstacles to clinical translation, such as long-term adeno-associated virus (AAV) safety, are discussed and some noninvasive, nonspecific technologies for peripheral neuromodulation are briefly mentioned.

Keywords

chemogenetics / neuromodulation / optogenetics / peripheral nervous system / spinal cord

Cite this article

Download citation ▾
Anakaren Romero Lozano, Victoria Koptelova, Zoya Ahmad, Huiliang (Evan) Wang. Genetically-targeted control of the spinal cord and peripheral nervous system. Journal of Intelligent Medicine, 2025, 2(1): 7-26 DOI:10.1002/jim4.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montgomery KL, Iyer SM, Christensen AJ, Deisseroth K, Delp SL. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci Transl Med. 2016; 8(337):337rv5. https://doi.org/10.1126/scitranslmed.aad7577

[2]

Shahriari D, Rosenfeld D, Anikeeva P. Emerging frontier of peripheral nerve and organ interfaces. Neuron. 2020; 108(2): 270-285. https://doi.org/10.1016/j.neuron.2020.09.025

[3]

Maimon BE, Diaz M, Revol ECM, et al. Optogenetic peripheral nerve immunogenicity. Sci Rep. 2018; 8(1):14076. https://doi.org/10.1038/s41598-018-32075-0

[4]

Deisseroth K. Optogenetics. Nat Methods. 2011; 8(1): 26-29. https://doi.org/10.1038/nmeth.f.324

[5]

Vlasov K, Van Dort CJ, Solt K. Optogenetics and chemogenetics. Methods Enzymol. 2018; 603: 181-196. https://doi.org/10.1016/bs.mie.2018.01.022

[6]

Montgomery KL, Yeh AJ, Ho JS, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods. 2015; 12(10): 969-974. https://doi.org/10.1038/nmeth.3536

[7]

Kathe C, Michoud F, Schönle P, et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat Biotechnol. 2022; 40(2): 198-208. https://doi.org/10.1038/s41587-021-01019-x

[8]

Zhang Y, Mickle AD, Gutruf P, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv. 2019; 5(7):eaaw5296. https://doi.org/10.1126/sciadv.aaw5296

[9]

Mickle AD, Won SM, Noh KN, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 2019; 565(7739): 361-365. https://doi.org/10.1038/s41586-018-0823-6

[10]

Liu X, Rao S, Chen W, et al. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion. Nat Methods. 2023; 20(11): 1802-1809. https://doi.org/10.1038/s41592-023-02020-9

[11]

Daou I, Tuttle AH, Longo G, et al. Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci. 2013; 33(47): 18631-18640. https://doi.org/10.1523/jneurosci.2424-13.2013

[12]

Daou I, Beaudry H, Ase AR, et al. Optogenetic silencing of nav1.8-positive afferents alleviates inflammatory and neuropathic pain. eNeuro. 2016; 3(1). https://doi.org/10.1523/eneuro.0140-15.2016

[13]

Li B, Yang X, Qian F, Tang M, Ma C, Chiang LY. A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter. Brain Res. 2015; 1609: 12-20. https://doi.org/10.1016/j.brainres.2015.03.008

[14]

Iyer SM, Montgomery KL, Towne C, et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol. 2014; 32(3): 274-278. https://doi.org/10.1038/nbt.2834

[15]

Iyer SM, Vesuna S, Ramakrishnan C, et al. Optogenetic and chemogenetic strategies for sustained inhibition of pain. Sci Rep. 2016; 6(1):30570. https://doi.org/10.1038/srep30570

[16]

Bonin RP, Wang F, Desrochers-Couture M, et al. Epidural optogenetics for controlled analgesia. Mol Pain. 2016; 12:1744806916629051. https://doi.org/10.1177/1744806916629051

[17]

Perez-Sanchez J, Middleton SJ, Pattison LA, et al. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci Transl Med. 2023; 15(716):eadh3839. https://doi.org/10.1126/scitranslmed.adh3839

[18]

Kumar PA, Stallman J, Kharbat Y, et al. Chemogenetic attenuation of acute nociceptive signaling enhances functional outcomes following spinal cord injury. J Neurotrauma. 2024; 41(9-10): 1060-1076. https://doi.org/10.1089/neu.2023.0141

[19]

Miller RE, Ishihara S, Bhattacharyya B, et al. Chemogenetic inhibition of pain neurons in a mouse model of osteoarthritis. Arthritis Rheumatol. 2017; 69(7): 1429-1439. https://doi.org/10.1002/art.40118

[20]

Park JH, Hong JK, Jang JY, et al. Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction. Sci Rep. 2017; 7(1):40872. https://doi.org/10.1038/srep40872

[21]

Samineni VK, Mickle AD, Yoon J, et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. Sci Rep. 2017; 7(1):15865. https://doi.org/10.1038/s41598-017-16129-3

[22]

Robilotto GL, Yang OJ, Alom F, Johnson RD, Mickle AD. Optogenetic urothelial cell stimulation induces bladder contractions and pelvic nerve afferent firing. Am J Physiol Ren Physiol. 2023; 325(2): F150-F163. https://doi.org/10.1152/ajprenal.00035.2023

[23]

Ma L, Zhu C, Wei YF, et al. Chronic chemogenetic inhibition of TRPV1 bladder afferent promotes micturition recovery post SCI. Exp Neurol. 2024; 374:114686. https://doi.org/10.1016/j.expneurol.2024.114686

[24]

Ji Z-G, Ito S, Honjoh T, et al. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS One. 2012; 7(3):e32699. https://doi.org/10.1371/journal.pone.0032699

[25]

Towne C, Montgomery KL, Iyer SM, Deisseroth K, Delp SL. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One. 2013; 8:e72691. https://doi.org/10.1371/journal.pone.0072691

[26]

Bryson JB, Machado CB, Crossley M, et al. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science. 2014; 344(6179): 94-97. https://doi.org/10.1126/science.1248523

[27]

Alilain WJ, Li X, Horn KP, et al. Light-induced rescue of breathing after spinal cord injury. J Neurosci. 2008; 28(46): 11862-11870. https://doi.org/10.1523/jneurosci.3378-08.2008

[28]

Gao Z, Yang Y, Feng Z, et al. Chemogenetic stimulation of proprioceptors remodels lumbar interneuron excitability and promotes motor recovery after SCI. Mol Ther. 2021; 29(8): 2483-2498. https://doi.org/10.1016/j.ymthe.2021.04.023

[29]

Ward PJ, Jones LN, Mulligan A, Goolsby W, Wilhelm JC, English AW. Optically-induced neuronal activity is sufficient to promote functional motor axon regeneration in vivo. PLoS One. 2016; 11(5):e0154243. https://doi.org/10.1371/journal.pone.0154243

[30]

Ecanow A, Berglund K, Carrasco D, Isaacson R, English A. Enhancing motor and sensory axon regeneration after peripheral nerve injury using bioluminescent optogenetics. Int J Mol Sci. 2022; 23(24):16084. https://doi.org/10.3390/ijms232416084

[31]

Yan J, Wan Y, Ji Z, et al. Motor neuron-specific membrane depolarization of transected peripheral nerves by upconversion nanoparticle-mediated optogenetics. Adv Funct Mater. 2023; 33(50):2303992. https://doi.org/10.1002/adfm.202303992

[32]

Michoud F, Sottas L, Browne LE, et al. Optical cuff for optogenetic control of the peripheral nervous system. J Neural Eng. 2018; 15(1):015002. https://doi.org/10.1088/1741-2552/aa9126

[33]

Jaiswal PB, English AW. Chemogenetic enhancement of functional recovery after a sciatic nerve injury. Eur J Neurosci. 2017; 45(10): 1252-1257. https://doi.org/10.1111/ejn.13550

[34]

Kim D, Yokota T, Suzuki T, et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc Natl Acad Sci. 2020; 117(35): 21138-21146. https://doi.org/10.1073/pnas.2007395117

[35]

Pan H, Sun T, Cui M, et al. Light-sensitive lactococcus lactis for microbe-gut-brain Axis regulating via upconversion optogenetic micro-nano system. ACS Nano. 2022; 16(4): 6049-6063. https://doi.org/10.1021/acsnano.1c11536

[36]

Zhang X, Pang G, Sun T, et al. A red light-controlled probiotic bio-system for in-situ gut-brain axis regulation. Biomaterials. 2023; 294:122005. https://doi.org/10.1016/j.biomaterials.2023.122005

[37]

Najjar SA, Edwards BS, Albers KM, Davis BM, Smith-Edwards KM. Optogenetic activation of the distal colon epithelium engages enteric nervous system circuits to initiate motility patterns. Am J Physiol Gastrointest Liver Physiol. 2021; 321(4): G426-G435. https://doi.org/10.1152/ajpgi.00026.2021

[38]

Efimov AI, Hibberd TJ, Wang Y, et al. Remote optogenetic control of the enteric nervous system and brain-gut axis in freely-behaving mice enabled by a wireless, battery-free optoelectronic device. Biosens Bioelectron. 2024; 258:116298. https://doi.org/10.1016/j.bios.2024.116298

[39]

Keppeler D, Merino RM, Lopez de la Morena D, et al. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J. 2018; 37(24):e99649. https://doi.org/10.15252/embj.201899649

[40]

Bali B, Lopez de la Morena D, Mittring A, et al. Utility of red-light ultrafast optogenetic stimulation of the auditory pathway. EMBO Mol Med. 2021; 13(6):e13391. https://doi.org/10.15252/emmm.202013391

[41]

Mager T, Lopez de la Morena D, Senn V, et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun. 2018; 9(1):1750. https://doi.org/10.1038/s41467-018-04146-3

[42]

Wrobel C, Dieter A, Huet A, et al. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Sci Transl Med. 2018; 10(449):eaao0540. https://doi.org/10.1126/scitranslmed.aao0540

[43]

Jablonski L, Harczos T, Wolf B, et al. Hearing Restoration by a Low-Weight Power-Efficient Multichannel Optogenetic Cochlear Implant System. 2020.05.25.114868; 2021. Preprint at. https://doi.org/10.1101/2020.05.25.114868

[44]

Yang X, McGlynn E, Das R, Paşca SP, Cui B, Heidari H. Nanotechnology enables novel modalities for neuromodulation. Adv Mater. 2021; 33(52):2103208. https://doi.org/10.1002/adma.202103208

[45]

Dahlhamer J, Lucas J, Zelaya C, et al. Prevalence of chronic pain and high-impact chronic pain among adults — United States, 2016. MMWR Morb Mortal Wkly Rep2018; 67(36): 1001-1006. https://doi.org/10.15585/mmwr.mm6736a2

[46]

Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health. 2011; 11(1):770. https://doi.org/10.1186/1471-2458-11-770

[47]

Wray JK, Dixon B, Przkora R. Radiofrequency Ablation. In StatPearls. StatPearls Publishing; 2023.

[48]

Cameron AP. Medical management of neurogenic bladder with oral therapy. Transl Androl Urol. 2016; 5: 51-62.

[49]

Baldoni F, Ercolani M, Baldaro B, Trombini G. Stressful events and psychological symptoms in patients with functional urinary disorders. Percept Mot Skills. 1995; 80(2): 605-606. https://doi.org/10.2466/pms.1995.80.2.605

[50]

Hepner KA, Watkins KE, Elliott MN, Clemens JQ, Hilton LG, Berry SH. Suicidal ideation among patients with bladder pain syndrome/interstitial cystitis. Urology. 2012; 80(2): 280-285. https://doi.org/10.1016/j.urology.2011.12.053

[51]

Zhou Z, Wang X, Liao L. Minimally invasive bladder stimulation via upconversion nanoparticle-mediated optogenetics. ACS Appl Nano Mater. 2024; 7(5): 5652-5660. https://doi.org/10.1021/acsanm.4c00704

[52]

Wenning GK, Kiechl S, Seppi K, et al. Prevalence of movement disorders in men and women aged 50-89 years (Bruneck Study cohort): a population-based study. Lancet Neurol. 2005; 4(12): 815-820. https://doi.org/10.1016/s1474-4422(05)70226-x

[53]

Llewellyn ME, Thompson KR, Deisseroth K, Delp SL. Orderly recruitment of motor units under optical control in vivo. Nat Med. 2010; 16(10): 1161-1165. https://doi.org/10.1038/nm.2228

[54]

National Institute of Neurological Disorders and Stroke. Peripheral Neuropathy. National Institute of Neurological Disorders and Stroke. [online] Available at:. Accessed 26 Dec 2024. https://www.ninds.nih.gov/health-information/disorders/peripheral-neuropathy

[55]

Lee SK, Wolfe SW. Peripheral nerve injury and repair. JAAOS - J Am Acad Orthop Surg. 2000; 8(4): 243-252. https://doi.org/10.5435/00124635-200007000-00005

[56]

Gordon T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020; 21(22):8652. https://doi.org/10.3390/ijms21228652

[57]

Gordon T, Sulaiman O, Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst. 2003; 8(4): 236-250. https://doi.org/10.1111/j.1085-9489.2003.03029.x

[58]

Crespo EL, Prakash M, Bjorefeldt A, et al. Bioluminescent optogenetic (BL-OG) activation of neurons during mouse postnatal brain development. STAR Protoc. 2021; 2(3):100667. https://doi.org/10.1016/j.xpro.2021.100667

[59]

Ward PJ, Clanton SL, English AW. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation. Eur J Neurosci. 2018; 47(4): 294-304. https://doi.org/10.1111/ejn.13836

[60]

Terenghi G. Peripheral nerve regeneration and neurotrophic factors. J Anat. 1999; 194: 1-14. https://doi.org/10.1046/j.1469-7580.1999.19410001.x

[61]

Socała K, Doboszewska U, Szopa A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 2021; 172:105840. https://doi.org/10.1016/j.phrs.2021.105840

[62]

Wang W. Optogenetic manipulation of ENS - the brain in the gut. Life Sci. 2018; 192: 18-25. https://doi.org/10.1016/j.lfs.2017.11.010

[63]

Sahasrabudhe A, Rupprecht LE, Orguc S, et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol. 2024; 42(6): 892-904. https://doi.org/10.1038/s41587-023-01833-5

[64]

World Health Organization. Deafness and Hearing Loss. World Health Organization. [online] Available at:. Accessed 26 December 2024. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

[65]

Dieter A, Keppeler D, Moser T. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Mol Med. 2020; 12(4):e11618. https://doi.org/10.15252/emmm.201911618

[66]

Dieter A, Duque-Afonso CJ, Rankovic V, Jeschke M, Moser T. Near physiological spectral selectivity of cochlear optogenetics. Nat Commun. 2019; 10(1):1962. https://doi.org/10.1038/s41467-019-09980-7

[67]

Hernandez VH, Gehrt A, Reuter K, et al. Optogenetic stimulation of the auditory pathway. J Clin Investig. 2014; 124(3): 1114-1129. https://doi.org/10.1172/jci69050

[68]

Mittring A, Moser T, Huet AT. Graded optogenetic activation of the auditory pathway for hearing restoration. Brain Stimul. 2023; 16(2): 466-483. https://doi.org/10.1016/j.brs.2023.01.1671

[69]

Duarte MJ, Kanumuri VV, Landegger LD, et al. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. Mol Ther. 2018; 26(8): 1931-1939. https://doi.org/10.1016/j.ymthe.2018.05.023

[70]

Bali B, Gruber-Dujardin E, Kusch K, Rankovic V, Moser T. Analyzing efficacy, stability, and safety of AAV-mediated optogenetic hearing restoration in mice. Life Sci Alliance. 2022; 5(8):e202101338. https://doi.org/10.26508/lsa.202101338

[71]

Diester I, Kaufman MT, Mogri M, et al. An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3): 387-397. https://doi.org/10.1038/nn.2749

[72]

Towne C, Schneider BL, Kieran D, Redmond DE, Aebischer P. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther. 2010; 17(1): 141-146. https://doi.org/10.1038/gt.2009.119

[73]

Williams JJ, Watson AM, Vazquez AL, Schwartz AB. Viral-mediated optogenetic stimulation of peripheral motor nerves in non-human primates. Front Neurosci. 2019; 13. https://doi.org/10.3389/fnins.2019.00759

[74]

Kudo M, Wupuer S, Fujiwara M, et al. Specific gene expression in unmyelinated dorsal root ganglion neurons in nonhuman primates by intra-nerve injection of AAV 6 vector. Mol Ther Methods Clin Dev. 2021; 23: 11-22. https://doi.org/10.1016/j.omtm.2021.07.009

[75]

Chen X, Ravindra Kumar S, Adams CD, et al. Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems. Neuron. 2022; 110(14): 2242-2257.e6. https://doi.org/10.1016/j.neuron.2022.05.003

[76]

Wolfe D, Mata M, Fink DJ. A human trial of HSV-mediated gene transfer for the treatment of chronic pain. Gene Ther. 2009; 16(4): 455-460. https://doi.org/10.1038/gt.2009.17

[77]

Ajay E, Gunewardene N, Richardson R. Emerging therapies for human hearing loss. Expet Opin Biol Ther. 2022; 22(6): 689-705. https://doi.org/10.1080/14712598.2022.2072208

[78]

Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013; 122(1): 23-36. https://doi.org/10.1182/blood-2013-01-306647

[79]

Chow BY, Boyden ES. Optogenetics and translational medicine. Sci Transl Med. 2013; 5(177):177ps5. https://doi.org/10.1126/scitranslmed.3003101

[80]

Zerche M, Wrobel C, Kusch K, Moser T, Mager T. Channelrhodopsin fluorescent tag replacement for clinical translation of optogenetic hearing restoration. Mol Ther - Methods Clin Dev. 2023; 29: 202-212. https://doi.org/10.1016/j.omtm.2023.03.009

[81]

Tasset A, Bellamkonda A, Wang W, et al. Overcoming barriers in non-viral gene delivery for neurological applications. Nanoscale. 2022; 14(10): 3698-3719. https://doi.org/10.1039/d1nr06939j

[82]

Downs ME, Lee SA, Yang G, Kim S, Wang Q, Konofagou EE. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo. Phys Med Biol. 2018; 63(3):035011. https://doi.org/10.1088/1361-6560/aa9fc2

[83]

Cotero V, Fan Y, Tsaava T, et al. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat Commun. 2019; 10(1): 952. https://doi.org/10.1038/s41467-019-08750-9

[84]

Gigliotti JC, Huang L, Ye H, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. 2013; 24(9): 1451-1460. https://doi.org/10.1681/asn.2013010084

[85]

Zachs DP, Offutt SJ, Graham RS, et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nat Commun. 2019; 10(1): 951. https://doi.org/10.1038/s41467-019-08721-0

RIGHTS & PERMISSIONS

2025 The Author(s). Journal of Intelligent Medicine published by John Wiley & Sons Australia, Ltd on behalf of Tianjin University.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/