Near infrared-II light-sheet microscopy: Basic principle, intellectualization, and medical application

Yuan Li , Siyu Ao , TianYu Zhu , Rong Zhao , Hao Yang , QiZhong Wang , Xiaoyu Mu , Hao Wang , Pengfei Liu , Xiao-Dong Zhang

Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 112 -133.

PDF
Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 112 -133. DOI: 10.1002/jim4.18
REVIEW

Near infrared-II light-sheet microscopy: Basic principle, intellectualization, and medical application

Author information +
History +
PDF

Abstract

Fluorescence microscopy has emerged as a pivotal tool in biological and medical research, wherein the assessment of penetration depth and imaging resolution serves as crucial indicators of a microscope’s efficacy. However, the intricate interaction between photons and biological tissues gives rise to substantial background noise, presenting a formidable challenge. Fortunately, the near-infrared window (NIR), particularly the NIR-II range (1000–1700 nm), has emerged as a viable solution to mitigate these challenges and attain optimal imaging outcomes. This review centers on the progressive developments in light-sheet microscopy techniques, elucidating their distinctive characteristics and applications in the field of biological imaging. Furthermore, the incorporation of optical design enhancements, encompassing light-sheet microscopy is discussed as a pivotal strategy to augment imaging quality. The discussion extends to include refinements in imaging precision and the integration of deep learning methodologies with NIR imaging, especially for unique applications in NIR clinical exploration. The ensuing discourse endeavors to furnish a comprehensive synthesis of advancements in fluorescence microscopy, emphasizing the significance of the NIR windows, while also elucidating the role of sophisticated optical design and machine learning methodologies in enhancing overall imaging capabilities.

Keywords

intellectualization and medical application / light-sheet microscopy / near infrared-II imaging

Cite this article

Download citation ▾
Yuan Li, Siyu Ao, TianYu Zhu, Rong Zhao, Hao Yang, QiZhong Wang, Xiaoyu Mu, Hao Wang, Pengfei Liu, Xiao-Dong Zhang. Near infrared-II light-sheet microscopy: Basic principle, intellectualization, and medical application. Journal of Intelligent Medicine, 2024, 1(1): 112-133 DOI:10.1002/jim4.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huda W, Abrahams RB. X-ray-based medical imaging and resolution. Am J Roentgenol. 2015; 204(4): W393-W397.

[2]

Pasveer B. Knowledge of shadows: the introduction of X-ray images in medicine. Sociol Health Illness. 1989; 11(4): 360-381.

[3]

Vaiana GS, Krieger AS, Timothy AF. Identification and analysis of structures in the corona from X-ray photography. Sol Phys. 1973; 32(1): 81-116.

[4]

Buzug TM. Computed tomography. In: Springer handbook of medical technology. Springer Berlin Heidelberg; 2011: 311-342.

[5]

De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A. Industrial applications of computed tomography. Int Acad Prod Eng Ann. 2014; 63(2): 655-677.

[6]

Garvey CJ, Hanlon R. Computed tomography in clinical practice. Br Med J. 2002; 324(7345): 1077-1080.

[7]

Glover GH. Overview of functional magnetic resonance imaging. Neurosurgery Clin. 2011; 22(2): 133-139.

[8]

Kuperman V. Magnetic Resonance Imaging: Physical Principles and Applications. Elsevier; 2000.

[9]

Vlaardingerbroek MT, Boer JA. Magnetic Resonance Imaging: Theory and Practice. Springer Science & Business Media; 2013.

[10]

Iskar M, Campillos M, Kuhn M, Jensen LJ, van Noort V, Bork P. Drug-induced regulation of target expression. PLoS Comput Biol. 2010; 6(9): e1000925.

[11]

Wu YL, Engl W, Hu B, et al. Nanomechanically visualizing drug–cell interaction at the early stage of chemotherapy. ACS Nano. 2017; 11(7): 6996-7005.

[12]

Diaspro A, Chirico G, Collini M. Two-photon fluorescence excitation and related techniques in biological microscopy. Q Rev Biophys. 2005; 38(2): 97-166.

[13]

Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011; 300(4): C723-C742.

[14]

Kaya T, Torisawa Y, Oyamatsu D, Nishizawa M, Matsue T. Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy (SECM). A comparison with fluorescence viability monitoring. Biosens Bioelectron. 2003; 18(11): 1379-1383.

[15]

Sabatini DD, Bensch K, Barrnett RJ. Cytochemistry and electron microscopy: the preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963; 17(1): 19-58.

[16]

Möckl L, Moerner WE. Super-resolution microscopy with single molecules in biology and beyond–essentials, current trends, and future challenges. J Am Chem Soc. 2020; 142(42): 17828-17844.

[17]

Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys. 2012; 41(1): 429-452.

[18]

Si P, Honkala A, de la Zerda A, Smith BR. Optical microscopy and coherence tomography of cancer in living subjects. Trends Cancer. 2020; 6(3): 205-222.

[19]

Razansky DC, Deliolanis N, Vinegoni C, Ntziachristos V. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr Pharmaceut Biotechnol. 2012; 13(4): 504-522.

[20]

Perdigao J, Lambrechts P, Vanherle G. Microscopy investigations: techniques, results, limitations. Am J Dent. 2000; 13: 3D18D.

[21]

Masoudi-Nejad A, Bidkhori G, Ashtiani SH, Najafi A, Bozorgmehr JH, Wang E. Cancer systems biology and modeling: microscopic scale and multiscale approaches. Semin Cancer Biol. 2015; 30: 60-69. Academic Press.

[22]

Kienle A, Hibst R. Light guiding in biological tissue due to scattering. Phys Rev Lett. 2006; 97(1): 018104.

[23]

Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015; 115(19): 10816-10906.

[24]

Ahrens J, Borchert H, Czock KH, et al. Total nuclear photon absorption cross sections for some light elements. Nucl Phys. 1975; 251(3): 479-492.

[25]

Benson DM, Knopp JA. Effect of tissue absorption and microscope optical parameters on the depth of penetration for fluorescence and reflectance measurements of tissue samples. Photochem Photobiol. 1984; 39(4): 495-502.

[26]

Lai J, Li Z, Wang C, He A. Experimental measurement of the refractive index of biological tissues by total internal reflection. Appl Opt. 2005; 44(10): 1845-1849.

[27]

Bashkatov AN, Genina EA, Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci. 2011; 4(01): 9-38.

[28]

Hung J, Lam S, Leriche JC, Palcic B. Autofluorescence of normal and malignant bronchial tissue. Laser Surg Med. 1991; 11(2): 99-105.

[29]

Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev. 2005; 11: 227-256.

[30]

Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med. 2016; 100: 53-65.

[31]

Koziol B, Markowicz M, Kruk J, Plytycz B. Riboflavin as a source of autofluorescence in Eisenia fetida coelomocytes. Photochem Photobiol. 2006; 82(2): 570-573.

[32]

Makarov MS, Storozheva MV, Borovkova NV. Collagen fiber autofluorescence level in evaluating the biological properties of tissue grafts. Современные технологии в медицине. 2017; 9(2 (eng)): 83-88.

[33]

Niyangoda C, Miti T, Breydo L, Uversky V, Muschol M. Carbonyl-based blue autofluorescence of proteins and amino acids. PLoS One. 2017; 12(5): e0176983.

[34]

Płytycz B, Homa J, Kozioł B, et al. Riboflavin content in autofluorescent earthworm coelomocytes is species-specific. Folia Histochem Cytobiol. 2006; 44(4): 275-280.

[35]

Pöhlker C, Huffman JA, Pöschl U. Autofluorescence of atmospheric bioaerosols–fluorescent biomolecules and potential interferences. Atmos Measur Tech Discuss. 2011; 4(5): 5857-5933.

[36]

Schaefer PM, Kalinina S, Rueck A, von Arnim CA, von Einem B. NADH autofluorescence—a marker on its way to boost bioenergetic research. Cytometry. 2019; 95(1): 34-46.

[37]

Cantarano A, Yao J, Matulionyte M, et al. Autofluorescence-free in vivo imaging using polymer-stabilized Nd3+-doped YAG nanocrystals. ACS Appl Mater Interfaces. 2020; 12(46): 51273-51284.

[38]

Jiang Y, Pu K. Molecular probes for autofluorescence-free optical imaging. Chem Rev. 2021; 121(21): 13086-13131.

[39]

Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci. 2018; 9(19): 4370-4380.

[40]

Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imag. 2012; 2012(1): 940585.

[41]

Landsman ML, Kwant G, Mook GA, Zijlstra WG. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol. 1976; 40(4): 575-583.

[42]

Jack Clifton II, Leikin JB. Methylene blue. Am J Therapeut. 2003; 10(4): 289-291.

[43]

Khan I, Saeed K, Zekker I, et al. Review on methylene blue: its properties, uses, toxicity and photodegradation. Water. 2022; 14(2): 242.

[44]

Dai Y, Zhang F, Chen K, et al. An activatable phototheranostic nanoplatform for tumor specific NIR-II fluorescence imaging and synergistic NIR-II photothermal-chemodynamic therapy. Small. 2023; 19(22): 2206053.

[45]

Du Y, Liu X, Zhu S. Near-infrared-II cyanine/polymethine dyes, current state and perspective. Front Chem. 2021; 9: 718709.

[46]

Hao W, Liu S, Liu H, et al. In vivo neuroelectrophysiological monitoring of atomically precise Au25 clusters at an ultrahigh injected dose. ACS Omega. 2020; 5(38): 24537-24545.

[47]

Homann C, Krukewitt L, Frenzel F, et al. NaYF4: Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew Chem Int Ed. 2018; 57(28): 8765-8769.

[48]

Jiao M, Mu X, Sun S, et al. Establishing bilateral modulation of radiation induced redox damage via biocatalytic single atom engineering at Au clusters. Chem Eng J. 2022; 445: 136793.

[49]

Li D, He S, Wu Y, et al. Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window. Adv Sci. 2019; 6(23): 1902042.

[50]

Mamiyev Z, Balayeva NO. PbS nanostructures: a review of recent advances. Mater Today Sustain. 2023; 21: 100305.

[51]

Men X, Wang F, Chen H, et al. Ultrasmall semiconducting polymer dots with rapid clearance for second near-infrared photoacoustic imaging and photothermal cancer therapy. Adv Funct Mater. 2020; 30(24): 1909673.

[52]

Ni Y, Lee S, Son M, et al. A diradical approach towards BODIPY-based dyes with intense near-infrared absorption around λ= 1100 nm. Angew Chem Int Ed. 2016; 55(8): 2815-2819.

[53]

Perepelitsa AS, Ovchinnikov OV, Smirnov MS, et al. Structural and optical properties of Ag2S/SiO2 core/shell quantum dots. J Lumin. 2021; 231: 117805.

[54]

Sanchez-Valencia JR, Dienel T, Gröning O, et al. Controlled synthesis of single-chirality carbon nanotubes. Nature. 2014; 512(7512): 61-64.

[55]

Shou K, Tang Y, Chen H, et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo second near-infrared window imaging and image-guided tumor surgery. Chem Sci. 2018; 9(12): 3105-3110.

[56]

Wang X, Wang C, Wang X, Wang Y, Zhang Q, Cheng Y. A polydopamine nanoparticle-knotted poly (ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem Mater. 2017; 29(3): 1370-1376.

[57]

Yao HJ, Sun L, Liu Y, et al. Monodistearoylphospha-tidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells. Carbon. 2016; 96: 362-376.

[58]

Ye F, Huang W, Li C, et al. Near-infrared fluorescence/photoacoustic agent with an intensifying optical performance for imaging-guided effective photothermal therapy. Adv Therap. 2020; 3(12): 2000170.

[59]

Soumpasis DM. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J. 1983; 41(1): 95-97.

[60]

Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc. 2020; 8(2): 022001.

[61]

Saetzler RK, Jallo J, Lehr HA, et al. Intravital fluorescence microscopy: impact of light-induced phototoxicity on adhesion of fluorescently labeled leukocytes. J Histochem Cytochem. 1997; 45(4): 505-513.

[62]

Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays. 2017; 39(8): 1700003.

[63]

Schneckenburger H, Richter V. Laser scanning versus wide-field—choosing the appropriate microscope in life sciences. Appl Sci. 2021; 11(2): 733.

[64]

Elliott AD. Confocal microscopy: principles and modern practices. Curr Prot Cytometry. 2020; 92(1): e68.

[65]

Rutter GA, Loder MK, Ravier MA. Rapid three-dimensional imaging of individual insulin release events by Nipkow disc confocal microscopy. Biochem Soc Trans. 2006; 34(Pt 5): 675-678.

[66]

Shimozawa T, Yamagata K, Kondo T, et al. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. Proc Natl Acad Sci USA. 2013; 110(9): 3399-3404.

[67]

Olarte OE, Andilla J, Gualda EJ, Loza-Alvarez P. Light-sheet microscopy: a tutorial. Adv Opt Photon. 2018; 10(1): 111-179.

[68]

Santi PA. Light sheet fluorescence microscopy: a review. J Histochem Cytochem. 2011; 59(2): 129-138.

[69]

Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Development. 2009; 136(12): 1963-1975.

[70]

Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004; 305(5686): 1007-1009.

[71]

Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L. Multiview light-sheet microscope for rapid in toto imaging. Nat Methods. 2012; 9(7): 730-733.

[72]

Yang B, Lange M, Millett-Sikking A. et al. High-resolution, Large Imaging Volume, and Multi-Vie. Single Objective Light-Sheet Microscopy BioRxiv; 2020. 2020.09. 22.309229.

[73]

Yang B, Lange M, Millett-Sikking A. et al. DaXi—high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy. Nat Methods. 2022; 19(4): 461-469.

[74]

Bèchet NB, Kylkilahti TM, Mattsson B, Petrasova M, Shanbhag NC, Lundgaard I. Light sheet fluorescence microscopy of optically cleared brains for studying the glymphatic system. J Cerebr Blood Flow Metabol. 2020; 40(10): 1975-1986.

[75]

Buglak NE, Lucitti J, Ariel P, Maiocchi S, Miller FJ, Jr, Bahnson ESM. Light sheet fluorescence microscopy as a new method for unbiased three-dimensional analysis of vascular injury. Cardiovasc Res. 2021; 117(2): 520-532.

[76]

Chen Y, Xie W, Glaser AK, et al. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. Biomed Opt Express. 2019; 10(3): 1257-1272.

[77]

Dalgarno HIC, Čižmár T, Vettenburg T, Nylk J, Gunn-Moore FJ. Dholakia K. Wavefront corrected light sheet microscopy in turbid media. Appl Phys Lett. 2012; 100(19).

[78]

Glaser AK, Reder NP, Chen Y, et al. Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat Commun. 2019; 10(1): 2781.

[79]

Meddens MBM, Liu S, Finnegan PS, Edwards TL, James CD, Lidke KA. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed Opt Express. 2016; 7(6): 2219-2236.

[80]

Sapoznik E, Chang BJ, Ju RJ, et al. A Single-Objective Light-Sheet Microscope with 200 Nm-Scale Resolution; 2020: 1-40. BioRxiv.

[81]

Strack R. Single-objective light sheet microscopy. Nat Methods, 2021, 18(1): 28-28,

[82]

Glaser AK, Bishop KW, Barner LA, et al. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat Methods. 2022; 19(5): 613-619.

[83]

Glaser AK, Bishop KW, Barner LA, et al. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat Methods. 2022; 19(5): 613-619.

[84]

Heintzmann R, Huser TJC. Super-resolution structured illumination microscopy. Chem Rev. 2017; 117(23): 13890-13908.

[85]

Saxena M, Eluru G, Gorthi SS. Structured illumination microscopy. Adv Opt Photon. 2015; 7(2): 241-275.

[86]

Blom H, Widengren J. Stimulated emission depletion microscopy. Chem Rev. 2017; 117(11): 7377-7427.

[87]

Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994; 19(11): 780-782.

[88]

Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006; 91(11): 4258-4272.

[89]

Shroff H, Galbraith CG, Galbraith JA, Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods. 2008; 5(5): 417-423.

[90]

Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008; 319(5864): 810-813.

[91]

Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006; 3(10): 793-796.

[92]

Wang F, Ma Z, Zhong Y, et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc Natl Acad Sci USA. 2021; 118(6): e2023888118.

[93]

Durnin J, Miceli JJJ, Eberly JH. Diffraction-free beams. Phys Rev Lett. 1987; 58(15): 1499-1501.

[94]

Chu X. Analytical study on the self-healing property of Bessel beam. Euro Phys J D. 2012; 66(10): 1-5.

[95]

McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemp Phys. 2005; 46(1): 15-28.

[96]

Müllenbroich MC, Turrini L, Silvestri L, et al. Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy. Front Cell Neurosci. 2018; 12: 315.

[97]

Berry MV, Balazs NL. Nonspreading wave packets. Am J Phys. 1979; 47(3): 264-267.

[98]

Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett. 2007; 99(21): 213901.

[99]

Meinert T, Rohrbach A. Light-sheet microscopy with length-adaptive Bessel beams. Biomed Opt Express. 2019; 10(2): 670-681.

[100]

Nylk J, Mitchell C, Vettenburg T, Gunn-Moore FJ. Dholakia K. Wavefront shaping of a Bessel light field enhances light sheet microscopy with scattered light. In: Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXI. Vol 8949; 2014.

[101]

Planchon TA, Gao L, Milkie DE, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods. 2011; 8(5): 417-423.

[102]

Hu Y, Siviloglou GA, Zhang P, et al. Self-accelerating Airy beams: generation, control, and applications. In: Nonlinear Photonics and Novel Optical Phenomena; 2012: 1-46.

[103]

Siviloglou G, Broky J, Dogariu A, Christodoulides D. Airy beams: a new class of optical waves. Opt Photon News. 2008; 19(12): 21.

[104]

Liu H, Hong G, Luo Z, et al. Atomic-precision gold clusters for NIR-II imaging. Adv Mater. 2019; 31(46): 1901015.

[105]

Liu P, Chen H, Pang M, et al. Airy-like beam-based light-sheet microscopy with improved FOV for zebrafish intracerebral hemorrhage. Opt Express. 2022; 30(9): 14709-14722.

[106]

Liu P, Shi T, Li H, et al. Airy beam assisted NIR-II light-sheet microscopy. Nano Today. 2022; 47: 101628.

[107]

Kaiser W, Garrett CGB. Two-photon excitation in Ca F 2: Eu 2+. Phys Rev Lett. 1961; 7(6): 229-231.

[108]

Horton NG, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics. 2013; 7(3): 205-209.

[109]

Truong TV, Trivedi V, Trinh L, et al. Live 4D imaging of the embryonic vertebrate heart with two-photon light sheet microscopy and simultaneous optical phase stamping. Biophys J. 2014; 106(2): 435a-436a.

[110]

Wolf S, Supatto W, Debrégeas G, et al. Whole-brain functional imaging with two-photon light-sheet microscopy. Nat Methods. 2015; 12(5): 379-380.

[111]

Dean KM, Roudot P, Welf ES, Danuser G, Fiolka R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys J. 2015; 108(12): 2807-2815.

[112]

Qin S. Image reconstruction for large FOV Airy beam light-sheet microscopy by a 3D deconvolution approach. Opt Lett. 2020; 45(10): 2804-2807.

[113]

Fahrbach FO, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A. Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation. Opt Express. 2013; 21(11): 13824-13839.

[114]

Escobet-Montalbán A, Gasparoli FM, Nylk J, Liu P, Yang Z, Dholakia K. Three-photon light-sheet fluorescence microscopy. Opt Lett. 2018; 43(21): 5484-5487.

[115]

Hosny NA, Seyforth JA, Spickermann G, et al. Planar Airy beam light-sheet for two-photon microscopy. Biomed Opt Express. 2020; 11(7): 3927-3935.

[116]

Burgess J. Rtx on-the nvidia turing gpu. Inst Electr Electron Eng Micro. 2020; 40(2): 36-44.

[117]

Kirk D. NVIDIA CUDA software and GPU parallel computing architecture. Int Sympos Mem Manag. 2007; 7: 103-104.

[118]

Perepelkina T, Fulton AB. Artificial intelligence (AI) applications for age-related macular degeneration (AMD) and other retinal dystrophies. Semin Ophthalmol. 2021; 36(4): 304-309. Taylor & Francis.

[119]

Nurvitadhi E, Kwon D, Jafari A, et al. Evaluating and enhancing intel® stratix® 10 FPGAs for persistent real-time AI. Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2019: 119-119.

[120]

Canziani A, Paszke A, Culurciello E. An Analysis of Deep Neural Network Models for Practical Applications ArXiv Preprint ArXiv; 2016. 1605.07678.

[121]

Larochelle H, Bengio Y, Louradour J, et al. Exploring strategies for training deep neural networks. J Mach Learn Res. 2009; 10(1).

[122]

Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications. Neurocomputing. 2017; 234: 11-26.

[123]

Miikkulainen R, Liang J, Meyerson E, et al. Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing. Academic Press; 2024: 269-287.

[124]

Sze V, Chen YH, Yang TJ, Emer JS. Efficient processing of deep neural networks: a tutorial and survey. Proc Inst Electr Electron Eng. 2017; 105(12): 2295-2329.

[125]

Agarap AF. Deep Learning Using Rectified Linear Units (RELU), ArXiv preprint ArXiv, 2016: 1803:08375.

[126]

Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Network. 2018; 107: 3-11.

[127]

He J, Li L, Xu J, et al. ReLU Deep Neural Networks and Linear Finite Elements ArXiv Preprint ArXiv; 2018. 1807.03973.

[128]

Hu R, Tian B, Yin S, et al. Efficient hardware architecture of softmax layer in deep neural network. In: 2018 Institute of Electrical and Electronics Engineers 23rd International Conference on Digital Signal Processing (DSP). Institute of Electrical and Electronics Engineers; 2018: 1-5.

[129]

Langer S. Approximating smooth functions by deep neural networks with sigmoid activation function. J Multivariate Anal. 2021; 182: 104696.

[130]

Liu W, Wen Y, Yu Z, et al. Large-margin Softmax Loss for Convolutional Neural Networks ArXiv Preprint ArXiv; 2016. 1612. 02295.

[131]

Badrinarayanan V, Handa A, Cipolla R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-wise Labelling ArXiv Preprint ArXiv; 2015. 1505.07293.

[132]

Badrinarayanan V, Kendall A, SegNet RC. ArXiv Preprint ArXiv. In: A deep convolutional encoder-decoder architecture for image segmentation. Vol 5; 2015. 1511.00561.

[133]

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computer and Computer-Assisted Intervention-Medical Image Computing and Computer Assisted Intervention Society 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing; 2015: 234-241.

[134]

Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, et al. UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, International Workshop on Deep Learning in Medical Image Analysis 2018, and 8th International Workshop, International Workshop on Multimodal Learning for Clinical Decision Support 2018, Held in Conjunction with Medical Image Computing and Computer Assisted Intervention Society 2018, Granada, Spain, September 20, 2018, Proceedings. Springer; 2018: 3-11.

[135]

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. Inst Electr Electron Eng Sig Process Mag. 2018; 35(1): 53-65.

[136]

Goodfellow I, Pouget-Abadie J. Mirza M, et al. Generative adversarial networks. Commun Assoc Comput Mach. 2020; 63(11): 139-144.

[137]

Li C, Moatti A, Zhang X, Troy Ghashghaei H, Greenbaum A. Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy. Biomed Opt Express. 2021; 12(8): 5214-5226.

[138]

Li C, Rai MR, Ghashghaei HT, Greenbaum A. Illumination angle correction during image acquisition in light-sheet fluorescence microscopy using deep learning. Biomed Opt Express. 2022; 13(2): 888-901.

[139]

Helmli FS, Scherer S. Adaptive shape from focus with an error estimation in light microscopy. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis; 2001: 188-193.

[140]

Zhang X, Wu H, Ma Y. A new auto-focus measure based on medium frequency discrete cosine transform filtering and discrete cosine transform. Appl Comput Harmon Anal. 2016; 40(2): 430-437.

[141]

Wei Z, Wu X, Tong W, et al. Elimination of stripe artifacts in light sheet fluorescence microscopy using an attention-based residual neural network. Biomed Opt Express. 2022; 13(3): 1292-1311.

[142]

Zhao F, Zhu L, Fang C, Yu T, Zhu D, Fei P. Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens. Biomed Opt Express. 2020; 11(12): 7273-7285.

[143]

Isola P, Zhu JY, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In: Proceedings of the Institute of Electrical and Electronics Engineers Conference on Computer Vision and Pattern Recognition; 2017: 1125-1134.

[144]

Ma Z, Wang F, Wang W, Zhong Y, Dai H. Deep learning for in vivo near-infrared imaging. Proc Natl Acad Sci USA. 2021; 118(1): e2021446118.

[145]

Akerboom J, Chen TW, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012; 32(40): 13819-13840.

[146]

Bassani JW, Bassani RA, Bers DM. Calibration of indo-1 and resting intracellular [Ca] i in intact rabbit cardiac myocytes. Biophys J. 1995; 68(4): 1453-1460.

[147]

Gee KR, Brown KA, Chen WNU, Bishop-Stewart J. Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 2000; 27(2): 97-106.

[148]

Kao JPY, Harootunian AT, Tsien RY. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989; 264(14): 8179-8184.

[149]

Miyawaki A, Griesbeck O, Heim R, Tsien RY. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA. 1999; 96(5): 2135-2140.

[150]

Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA. 2001; 98(6): 3197-3202.

[151]

Roe MW, Lemasters JJ, Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium. 1990; 11(2-3): 63-73.

[152]

Thomas D, Tovey SC, Collins TJ, Bootman M, Berridge M, Lipp P. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium. 2000; 28(4): 213-223.

[153]

Tian L, Hires SA, Mao T, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods. 2009; 6(12): 875-881.

[154]

Quirin S, Vladimirov N, Yang CT, Peterka DS, Yuste R, B. Ahrens M. Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy. Opt Lett. 2016; 41(5): 855-858.

[155]

De Vito G, Turrini L, Müllenbroich C, et al. Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy. Biomed Opt Express. 2022; 13(3): 1516-1536.

[156]

Sacher WD, Chen FD, Moradi-Chameh H. et al. Implantable photonic neural probes for light-sheet fluorescence brain imaging. Neurophotonics. 2021; 8(2): 025003.

[157]

Wang F, Wan H, Ma Z, et al. Light-sheet microscopy in the near-infrared II window. Nat Methods. 2019; 16(6): 545-552.

[158]

Huang Y, Chen K, Liu L, et al. Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney injury. Small. 2023; 19(30): 2300145.

[159]

Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: from atom physics to biomedicine. Coord Chem Rev. 2021; 448: 214184.

[160]

Ma H, Zhang X, Liu L, et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci Adv. 2023; 9(31): eadh7828.

[161]

Wu D, Zhang XD, Liu PX, Zhang LA, Fan FY, Guo ML. Gold nanostructure: fabrication, surface modification, targeting imaging, and enhanced radiotherapy. Curr Nanosci. 2011; 7(1): 110-118.

[162]

Zhang J, Zhao P, Li W, et al. Near-infrared light-activatable spherical nucleic acids for conditional control of protein activity. Angew Chem Int Ed. 2022; 61(22): e202117562.

[163]

Zhang P, Guo R, Zhang H, Yang W, Tian Y. Fluoropolymer coated DNA nanoclews for volumetric visualization of oligonucleotides delivery and near infrared light activated anti-angiogenic oncotherapy. Adv Sci. 2023; 10(32): 2304633.

[164]

Pitrone PG, Schindelin J, Stuyvenberg L, et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods. 2013; 10(7): 598-599.

[165]

Schmied C, Stamataki E, Tomancak P. Open-source solutions for SPIMage processing. Methods Cell Biol. 2014; 123: 505-529. Academic Press.

[166]

Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of microscopes using µManager. Curr Protoc Mol Biol. 2010; 92(1): 14.20.1-14.20.17.

[167]

Edelstein AD, Tsuchida MA, Amodaj N, et al. Advanced methods of microscope control using µManager software. J Biol Methods. 2014; 1(2): e10.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Intelligent Medicine published by John Wiley & Sons Australia, Ltd on behalf of Tianjin University.

AI Summary AI Mindmap
PDF

453

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/