Advancements in colorectal cancer detection: The role of immuno-positron emission tomography, immuno-single-photon emission computed tomography, and machine learning applications

Surui Chen , Xiumin Shi , Shu Liu , Pei Pei , Kai Yang , Lin Hu

Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 63 -90.

PDF
Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 63 -90. DOI: 10.1002/jim4.16
REVIEW

Advancements in colorectal cancer detection: The role of immuno-positron emission tomography, immuno-single-photon emission computed tomography, and machine learning applications

Author information +
History +
PDF

Abstract

Colorectal cancer (CRC) ranks as the world’s second most prevalent cancer and third in mortality. Detection and diagnosis are crucial in research and clinical settings. While colonoscopy and computed tomographic colonography are widely used for identifying organic lesions, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) offer superior visualization of molecular changes. These immuno-PET and immuno-SPECT techniques surpass conventional [18F] Fluorodeoxyglucose PET/CT in specificity and sensitivity, improving CRC diagnostics and supporting therapeutic strategies. This review emphasizes the role of immuno-PET/SPECT in CRC diagnosis and establishing a foundation for therapeutic strategies, facilitating hierarchical management through the identification of treatment-responsive populations, prediction of therapeutic outcomes, and support for intraoperative imaging. This review introduces the preclinical and clinical utility of immunoconjugates for detecting colorectal adenomas, and primary, metastatic, or recurrent CRC, focusing on specific CRC cell targets like the epidermal growth factor receptor and carcinoembryonic antigen. The review also covers various mAb-based immunoconjugates and engineered mAb fragments, including diabodies and minibodies. Finally, it looks into the great promise of machine learning in PET or SPECT and it addresses the challenges of translating preclinical successes into clinical practice for colorectal adenoma diagnosis, proposing potential solutions and directions for future research.

Keywords

colorectal cancer / diagnosis / immuno-PET / immuno-SPECT / machine learning / radiomics

Cite this article

Download citation ▾
Surui Chen, Xiumin Shi, Shu Liu, Pei Pei, Kai Yang, Lin Hu. Advancements in colorectal cancer detection: The role of immuno-positron emission tomography, immuno-single-photon emission computed tomography, and machine learning applications. Journal of Intelligent Medicine, 2024, 1(1): 63-90 DOI:10.1002/jim4.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weiderpass E. International agency for research on cancer. Encycl Toxicol. 2024: 573-576.

[2]

Morson B. The evolution of colorectal carcinoma. Clin Radiol. 1984; 35(6): 425-431.

[3]

Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019; 16(12): 713-732.

[4]

Hossain MS, Karuniawati H, Jairoun AA, et al. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers. 2022; 14(7): 1732.

[5]

Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023; 73(3): 233-254.

[6]

Ladabaum U, Dominitz JA, Kahi C, Schoen RE. Strategies for colorectal cancer screening. Gastroenterology. 2020; 158(2): 418-432.

[7]

Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016; 11: 967-976.

[8]

Ravizza D, Bartolomei M, Santoro L, et al. Positron emission tomography for the detection of colorectal adenomas. Dig Liver Dis. 2010; 42(3): 185-190.

[9]

Peng J, He Y, Xu J, Sheng J, Cai S, Zhang Z. Detection of incidental colorectal tumours with 18F-labelled 2-fluoro-2-deoxyglucose positron emission tomography/computed tomography scans: results of a prospective study: incidental FDG uptake in colorectum. Colorectal Dis. 2011; 13(11): e374-e378.

[10]

Cho SH, Kim SW, Kim WC, et al. Incidental focal colorectal 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography. World J Gastroenterol. 2013; 19: 3453-3458.

[11]

Mui M, Akhurst T, Warrier SK, Lynch AC, Heriot AG. Detection of incidental colorectal pathology on positron emission tomography/computed tomography. ANZ J Surg. 2018; 88(3): E122.

[12]

Chung SM, Kim KO, Cho IH, Kim TN. Clinicopathological analysis and risk factors of advanced colorectal neoplasms incidentally detected by 18F-FDG PET-CT. Eur J Gastroenterol Hepatol. 2017; 29(4): 407-413.

[13]

Valente MA. Endoscopic and histopathological analysis of incidental focal colorectal 18F-fluorodeoxyglucose uptake in PET/CT scan: colonoscopic evaluation is warranted. Am J Surg. 2018; 215(3): 379-381.

[14]

Albertsen LN, Jaensch C, Tornbjerg SM, Teil J, Madsen AH. Correlation between incidental focal colorectal FDG uptake on PET/CT and colonoscopic and histopathological results. Scand J Gastroenterol. 2022; 57(2): 246-252.

[15]

Vogel JD, Felder SI, Bhama AR, et al. The American Society of Colon and Rectal Surgeons clinical practice guidelines for the management of colon cancer. Dis Colon Rectum. 2022; 65(2): 148-177.

[16]

Benson AB, Venook AP, Al-Hawary MM. et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2021; 19(3): 329-359.

[17]

Argilés G, Tabernero J, Labianca R, et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(10): 1291-1305.

[18]

Cervantes A, Adam R, Roselló S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(1): 10-32.

[19]

Terauchi T, Murano T, Daisaki H, et al. Evaluation of whole-body cancer screening using 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography: a preliminary report. Ann Nucl Med. 2008; 22(5): 379-385.

[20]

Kousgaard SJ, Thorlacius-Ussing O. Incidental colorectal FDG uptake on PET/CT scan and lesions observed during subsequent colonoscopy: a systematic review. Tech Coloproctol. 2017; 21(7): 521-529.

[21]

Young CJ, Zahid A, Choy I, Thompson JF, Saw RPM. Incidental detection of colorectal lesions by FDG PET/CT scans in melanoma patients. Eur J Surg Oncol. 2017; 43(11): 2163-2169.

[22]

Farquharson AL, Chopra A, Ford A, Matthews S, Amin SN, De Noronha R. Incidental focal colonic lesions found on 18Fluorodeoxyglucose positron emission tomography/computed tomography scan: further support for a national guideline on definitive management. Colorectal Dis. 2012; 14(2): e56.

[23]

Treglia G, Calcagni ML, Rufini V, et al. Clinical significance of incidental focal colorectal 18F-fluorodeoxyglucose uptake: our experience and a review of the literature. Colorectal Dis. 2012; 14(2): 174-180.

[24]

Gutman F, Alberini JL, Wartski M, et al. Incidental colonic focal lesions detected by FDG PET/CT. AJR Am J Roentgenol. 2005; 185(2): 495-500.

[25]

Kamel EM, Thumshirn M, Truninger K, et al. Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med. 2004; 45: 1804-1810.

[26]

Seifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial intelligence and machine learning in nuclear medicine: future perspectives. Semin Nucl Med. 2021; 51(2): 170-177.

[27]

Lugat A, Bailly C, Chérel M, et al. Immuno-PET: design options and clinical proof-of-concept. Front Med. 2022; 9: 1026083.

[28]

Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020; 120(8): 3787-3851.

[29]

Manafi-Farid R, Ataeinia B, Ranjbar S, et al. ImmunoPET: antibody-based PET imaging in solid tumors. Front Med. 2022; 9: 916693.

[30]

Lütje S, Franssen GM, Sharkey RM, et al. Anti-CEA antibody fragments labeled with [18F]AlF for PET imaging of CEA-expressing tumors. Bioconjugate Chem. 2014; 25(2): 335-341.

[31]

Xiao Y, Mei C, Xu D, et al. Identification of a CEACAM5 targeted nanobody for positron emission tomography imaging and near-infrared fluorescence imaging of colorectal cancer. Eur J Nucl Med Mol Imag. 2023; 50(8): 2305-2318.

[32]

Xenaki KT, Oliveira S, van Bergen En Henegouwen PMP. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors. Front Immunol. 2017; 8: 1287.

[33]

Bates A, Power CA. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies. 2019; 8(2): 28.

[34]

Rodriguez C, Delaney S, Sarrett SM, Keinänen OM, Zeglis BM. Antibody engineering for nuclear imaging and radioimmunotherapy. J Nucl Med. 2022; 63(9): 1316-1322.

[35]

Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imag. 2007; 34: 850-858.

[36]

Achmad A, Hanaoka H, Yoshioka H, et al. Predicting cetuximab accumulation in KRAS wild-type and KRAS mutant colorectal cancer using 64Cu-labeled cetuximab positron emission tomography. Cancer Sci. 2012; 103: 600-605.

[37]

Zeng D, Guo Y, White AG, et al. Comparison of conjugation strategies of cross-bridged macrocyclic chelators with cetuximab for copper-64 radiolabeling and PET imaging of EGFR in colorectal tumor-bearing mice. Mol Pharm. 2014; 11: 3980-3987.

[38]

Aerts HJ, Dubois L, Perk L, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med. 2009; 50: 123-131.

[39]

Nayak TK, Regino CA, Wong KJ, et al. PET Imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab. Eur J Nucl Med Mol Imag. 2010; 37: 1368-1376.

[40]

Shi X, Gao K, Huang H, Gao R. Pretargeted immuno-PET based on bioorthogonal chemistry for imaging EGFR positive colorectal cancer. Bioconjugate Chem. 2018; 29: 250-254.

[41]

Chang AJ, De Silva RA, Lapi SE. Development and characterization of 89Zr-labeled panitumumab for immuno-positron emission tomographic imaging of the epidermal growth factor receptor. Mol Imag. 2013; 12: 17-27.

[42]

Nayak TK, Garmestani K, Milenic DE, Brechbiel MW. PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J Nucl Med. 2012; 53: 113-120.

[43]

Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J Nucl Med. 2010; 51: 942-950.

[44]

Turker NS, Heidari P, Kucherlapati R, Kucherlapati M, Mahmood U. An EGFR targeted PET imaging probe for the detection of colonic adenocarcinomas in the setting of colitis. Theranostics. 2014; 4: 893-903.

[45]

Milenic DE, Wong KJ, Baidoo KE, et al. Targeting HER2: a report on the in vitro and in vivo pre-clinical data supporting trastuzumab as a radioimmunoconjugate for clinical trials. mAbs. 2010; 2: 550-564.

[46]

Bensch F, van Rooijen JM, Schröder CP, Reyners AK. A 21-year-old patient with a HER2-positive colorectal cancer. Gastroenterology. 2015; 148: 20-21.

[47]

Yuan Q, Furukawa T, Tashiro T, et al. Immuno-PET imaging of HER3 in a model in which HER3 signaling plays a critical role. PLoS One. 2015; 10: e0143076.

[48]

Carrasquillo JA, Pandit-Taskar N. O’Donoghue JA, et al. (124)I-huA33 antibody PET of colorectal cancer. J Nucl Med. 2011; 52: 1173-1180.

[49]

O’Donoghue JA, Smith-Jones PM. Humm JL, et al. 124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET. J Nucl Med. 2011; 52: 1878-1885.

[50]

Zeglis BM, Davis CB, Abdel-Atti D. et al. Chemoenzymatic strategy for the synthesis of site-specifically labeled immunoconjugates for multimodal PET and optical imaging. Bioconjugate Chem. 2014; 25: 2123-2128.

[51]

Delaney S, Nagy Á, Karlström AE, Zeglis BM. Site-specific photoaffinity bioconjugation for the creation of 89Zr-labeled radioimmunoconjugates. Mol Imag Biol. 2023; 25(6): 1104-1114.

[52]

Zeglis BM, Brand C, Abdel-Atti D. et al. Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm. 2015; 12: 3575-3587.

[53]

Cook BE, Adumeau P, Membreno R, et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjugate Chem. 2016; 27: 1789-1795.

[54]

Adumeau P, Carnazza KE, Brand C, et al. A pretargeted approach for the multimodal PET/NIRF imaging of colorectal cancer. Theranostics. 2016; 6: 2267-2277.

[55]

Keinänen O, Brennan JM, Membreno R, et al. Dual radionuclide theranostic pretargeting. Mol Pharm. 2019; 16: 4416-4421.

[56]

Zeglis BM, Sevak KK, Reiner T, et al. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med. 2013; 54: 1389-1396.

[57]

Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R. Reactive polymer enables efficient in vivo bioorthogonal chemistry. Proc Natl Acad Sci USA. 2012; 109: 4762-4767.

[58]

Bading JR, Hörling M, Williams LE, Colcher D, Raubitschek A, Strand SE. Quantitative serial imaging of an 124I anti-CEA monoclonal antibody in tumor-bearing mice. Cancer Biother Radiopharm. 2008; 23: 399-409.

[59]

Wong JYC, Yamauchi DM, Adhikarla V, et al. First-in-human pilot PET immunoimaging study of 64Cu-anti-carcinoembryonic antigen monoclonal antibody (hT84.66-M5A) in patients with carcinoembryonic antigen-producing cancers. Cancer Biother Radiopharm. 2023; 38: 26-37.

[60]

Lwin TM, Minnix M, Li L, et al. Multimodality PET and near-infrared fluorescence intraoperative imaging of CEA-positive colorectal cancer. Mol Imag Biol. 2023; 25: 727-734.

[61]

Kenanova V, Olafsen T, Crow DM, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 2005; 65: 622-631.

[62]

Sundaresan G, Yazaki PJ, Shively JE, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med. 2003; 44: 1962-1969.

[63]

Cai W, Olafsen T, Zhang X, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med. 2007; 48: 304-310.

[64]

McBride WJ, Zanzonico P, Sharkey RM, et al. Bispecific antibody pretargeting PET (immunoPET) with an 124I-labeled hapten-peptide. J Nucl Med. 2006; 47: 1678-1688.

[65]

Li L, Lin X, Wang L, et al. Immuno-PET of colorectal cancer with a CEA-targeted [68 Ga]Ga-nanobody: from bench to bedside. Eur J Nucl Med Mol Imag. 2023; 50: 3735-3749.

[66]

Waaijer SJH, Warnders FJ, Stienen S, et al. Molecular imaging of radiolabeled bispecific T-cell engager 89Zr-AMG211 targeting CEA-positive tumors. Clin Cancer Res. 2018; 24: 4988-4996.

[67]

Moek KL, Waaijer SJH, Kok IC, et al. 89Zr-labeled bispecific T-cell engager AMG 211 PET shows AMG 211 accumulation in CD3-rich tissues and clear, heterogeneous tumor uptake. Clin Cancer Res. 2019; 25: 3517-3527.

[68]

Schoffelen R, Sharkey RM, Goldenberg DM, et al. Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga-and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer Therapeut. 2010; 9: 1019-1027.

[69]

Ruivo E, Adhikari K, Elvas F, et al. Improved stability of a novel fluorine-18 labeled TCO analogue for pretargeted PET imaging. Nucl Med Biol. 2019; 76-77: 36-42.

[70]

Ruivo E, Elvas F, Adhikari K, et al. Preclinical evaluation of a novel 18F-labeled dTCO-amide derivative for bioorthogonal pretargeted positron emission tomography imaging. ACS Omega. 2020; 5: 4449-4456.

[71]

Ding H, Carlton MM, Povoski SP, et al. Site specific discrete PEGylation of (124)I-labeled mCC49 Fab′ fragments improves tumor MicroPET/CT imaging in mice. Bioconjugate Chem. 2013; 24: 1945-1954.

[72]

Long NE, Sullivan BJ, Ding H, et al. Linker engineering in anti-TAG-72 antibody fragments optimizes biophysical properties, serum half-life, and high-specificit. tumor imaging. J Biol Chem. 2018; 293: 9030-9040.

[73]

Zou P, Povoski SP, Hall NC, et al. 124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results. World J Surg Oncol. 2010; 8: 65.

[74]

Li L, Turatti F, Crow D, et al. Monodispersed DOTA-PEG-conjugated anti-TAG-72 diabody has low kidney uptake and high tumor-to-blood ratios resulting in improved 64Cu PET. J Nucl Med. 2010; 51: 1139-1146.

[75]

Li L, Crow D, Turatti F, et al. Site-specific conjugation of monodispersed DOTA-PEGn to a thiolated diabody reveals the effect of increasing peg size on kidney clearance and tumor uptake with improved 64-copper PET imaging. Bioconjugate Chem. 2011; 22: 709-716.

[76]

Azhdarinia A, Voss J, Ghosh SC, et al. Evaluation of anti-LGR5 antibodies by immunoPET for imaging colorectal tumors and development of antibody-drug conjugates. Mol Pharm. 2018; 15: 2448-2454.

[77]

Jung KH, Lee JH, Kim M, Lee EJ, Cho YS, Lee KH. Celecoxib-induced modulation of colon cancer CD133 expression occurs through AKT inhibition and is monitored by 89Zr immuno-PET. Mol Imag. 2022; 2022: 4906934.

[78]

Burvenich IJ, Lee FT, Guo N, et al. In vitro and in vivo evaluation of 89Zr-DS-8273a as a theranostic for anti-death receptor 5 therapy. Theranostics. 2016; 6: 2225-2234.

[79]

Yang Y, Wang J, Liu W, et al. 89Zr and 177Lu labeling of anti-DR5 monoclonal antibody for colorectal cancer targeting PET-imaging and radiotherapy. J Radioanal Nucl Chem. 2021; 330: 997-1005.

[80]

Yang DM, Lin T, Li C, Harrison AG, Geng TT, Wang PH. A critical role for MSR1 in vesicular stomatitis virus infection of the central nervous system. iScience. 2021; 24: 102678.

[81]

Guo Z, Zhu L, Xu W, et al. PD-L1 ImmunoPET on the basis of Avidin/Biotin pre-targeted cancer imaging. Biochem Biophys Res Commun. 2023; 673: 23-28.

[82]

Liu Q, Jiang L, Li K, et al. Immuno-PET imaging of 68Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers. Cancer Immunol Immunother. 2021; 70: 1721-1733.

[83]

Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int J Cancer. 2011; 128: 920-926.

[84]

Cuda TJ, He Y, Kryza T, et al. Preclinical molecular PET-CT imaging targeting CDCP1 in colorectal cancer. Contrast Media Mol Imaging. 2021; 2021: 3153278.

[85]

Zhang Y, Zhang D, An S, et al. Development and characterization of nanobody-derived CD47 theranostic pairs in solid tumors. Research. 2023; 6: 0077.

[86]

Zhou B, Wang H, Liu R, et al. PET imaging of Dll4 expression in glioblastoma and colorectal cancer xenografts using (64)Cu-labeled monoclonal antibody 61B. Mol Pharm. 2015; 12: 3527-3534.

[87]

Liu S, Li D, Park R, et al. PET imaging of colorectal and breast cancer by targeting EphB4 receptor with 64Cu-labeled hAb47 and hAb131 antibodies. J Nucl Med. 2013; 54: 1094-1100.

[88]

Čepa A, Ráliš J, Král V, et al. In vitro evaluation of the monoclonal antibody 64Cu-IgG M75 against human carbonic anhydrase IX and its in vivo imaging. Appl Radiat Isot. 2018; 133: 9-13.

[89]

Shih YH, Peng CL, Lee SY, et al. 111In-cetuximab as a diagnostic agent by accessible epidermal growth factor (EGF) receptor targeting in human metastatic colorectal carcinoma. Oncotarget. 2015; 6: 16601-16610.

[90]

Shih BB, Chang YF, Cheng CC, et al. SPECT imaging evaluation of 111indium-chelated cetuximab for diagnosing EGFR-positive tumor in an HCT-15-induced colorectal xenograft. J Chin Med Assoc. 2017; 80: 766-773.

[91]

Qiu L, Lin Q, Si Z, et al. A pretargeted imaging strategy for EGFR-positive colorectal carcinoma via modulation of Tz-radioligand pharmacokinetics. Mol Imag Biol. 2021; 23: 38-51.

[92]

Bellaye PS, Moreau M, Raguin O, et al. Radiolabeled F(ab′)2-cetuximab for theranostic purposes in colorectal and skin tumor-bearing mice models. Clin Transl Oncol. 2018; 20: 1557-1570.

[93]

Pan G, Li D, Li X, Peng Y, Wang T, Zuo C. SPECT/CT imaging of HER2 expression in colon cancer-bearing nude mice using 125I-Herceptin. Biochem Biophys Res Commun. 2018; 504: 765-770.

[94]

Qin X, Meng X, Xiong Y, et al. Initial evaluation of 99mTc-labeled anti-carcinoembryonic antigen single-chain fragment variable for micro-single-photon emission computed tomography imaging in mice with colorectal cancer. J Label Compd Radiopharm. 2022; 65: 63-70.

[95]

Wong JY, Chu DZ, Williams LE, et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin Cancer Res. 2004; 10: 5014-5021.

[96]

Schoffelen R, van der Graaf WT, Sharkey RM, et al. Quantitative immuno-SPECT monitoring of pretargeted radioimmunotherapy with a bispecific antibody in an intraperitoneal nude mouse model of human colon cancer. J Nucl Med. 2012; 53: 1926-1932.

[97]

Knight JC, Mosley M, Uyeda HT, et al. Vivo pretargeted imaging of HER2 and TAG-72 expression using the HaloTag enzyme. Mol Pharm. 2017; 14: 2307-2313.

[98]

Rossin R, Verkerk PR, van den Bosch SM, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed Engl. 2010; 49: 3375-3378.

[99]

van Duijnhoven SM, Rossin R, van den Bosch SM, Wheatcroft MP, Hudson PJ, Robillard MS. Diabody pretargeting with click chemistry in vivo. J Nucl Med. 2015; 56: 1422-1428.

[100]

Liu Y, Jin X, Lan X, Lang J, Wen Q, An R. SPECT imaging of colorectal cancer by targeting CD 133 receptor with 99mTc-labeled monoclonal antibody. Q J Nucl Med Mol Imaging. 2019; 63: 216-224.

[101]

Cheng D, Zou W, Li X, et al. Preparation and evaluation of 99mTc-labeled anti-CD11b antibody targeting inflammatory microenvironment for colon cancer imaging. Chem Biol Drug Des. 2015; 85: 696-701.

[102]

Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011; 40: 149-162.

[103]

Roskoski R Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res. 2019; 139: 395-411.

[104]

Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Targeted Ther. 2020; 5: 22.

[105]

Stefani C, Miricescu D, Stanescu S II, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now? Int J Mol Sci. 2021; 22: 10260.

[106]

Janani B, Vijayakumar M, Priya K, et al. EGFR-based targeted therapy for colorectal cancer-promises and challenges. Vaccines. 2022; 10: 499.

[107]

Messersmith WA, Hidalgo M. Panitumumab, a monoclonal anti epidermal growth factor receptor antibody in colorectal cancer: another one or the one? Clin Cancer Res. 2007; 13: 4664-4666.

[108]

Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021; 325: 669-685.

[109]

Morris VK, Kennedy EB, Baxter NN, et al. Treatment of metastatic colorectal cancer: ASCO guideline. J Clin Oncol. 2023; 41: 678-700.

[110]

García-Foncillas J, Sunakawa Y, Aderka D, et al. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol. 2019; 9: 849.

[111]

World Health Organization. The selection and use of essential medicines 2023: Web annex A. In: World Health Organization Model List of Essential Medicines: 23rd list. World Health Organization; 2023: 67.

[112]

Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023; 22: 101-126.

[113]

Greally M, Kelly CM, Cercek A. HER2: an emerging target in colorectal cancer. Curr Probl Cancer. 2018; 42: 560-571.

[114]

La Salvia A, Lopez-Gomez V. Garcia-Carbonero R. HER2-targeted therapy: an emerging strategy in advanced colorectal cancer. Expet Opin Invest Drugs. 2019; 28: 29-38.

[115]

Yan Q, Guo K, Feng G, et al. Association between the overexpression of Her3 and clinical pathology and prognosis of colorectal cancer: a meta-analysis. Medicine. 2018; 97: e12317.

[116]

Garinchesa P, Sakamoto J, Welt S, Real F, Rettig W, Old L. Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int J Oncol. 1996; 9: 465-471.

[117]

Heath JK, White SJ, Johnstone CN, et al. The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc Natl Acad Sci USA. 1997; 94: 469-474.

[118]

Zygulska AL, Pierzchalski P. Novel diagnostic biomarkers in colorectal cancer. Int J Mol Sci. 2022; 23: 852.

[119]

Welt S, Divgi CR, Kemeny N, et al. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 1994; 12: 1561-1571.

[120]

Tschmelitsch J, Barendswaard E, Williams C, Jr., et al. Enhanced antitumor activity of combination radioimmunotherapy (131I-labeled monoclonal antibody A33) with chemotherapy (fluorouracil). Cancer Res. 1997; 57: 2181-2186.

[121]

Scott AM, Lee FT, Jones R, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005; 11: 4810-4817.

[122]

Chong G, Lee FT, Hopkins W, et al. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin Cancer Res. 2005; 11: 4818-4826.

[123]

Ciprotti M, Chong G, Gan HK, et al. Quantitative intratumoural microdistribution and kinetics of (131)I-huA33 antibody in patients with colorectal carcinoma. EJNMMI Res. 2014; 4: 22.

[124]

Herbertson RA, Tebbutt NC, Lee FT, et al. Targeted chemoradiation in metastatic colorectal cancer: a phase I trial of 131I-huA33 with concurrent capecitabine. J Nucl Med. 2014; 55: 534-539.

[125]

Lee FT, Hall C, Rigopoulos A, et al. Immuno-PET of human colon xenograft-bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med. 2001; 42: 764-769.

[126]

Welt S, Scott AM, Divgi CR, et al. Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 1996; 14: 1787-1797.

[127]

Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem. 2001; 47: 624-630.

[128]

Hall C, Clarke L, Pal A, et al. A Review of the role of carcinoembryonic antigen in clinical practice. Ann Coloproctol. 2019; 35: 294-305.

[129]

Guadagni F, Roselli M, Cosimelli M, et al. Quantitative analysis of CEA expression in colorectal adenocarcinoma and serum: lack of correlation. Int J Cancer. 1997; 72: 949-954.

[130]

Yazaki PJ, Sherman MA, Shively JE, et al. Humanization of the anti-CEA T84.66 antibody based on crystal structure data. Protein Eng Des Sel. 2004; 17: 481-489.

[131]

Neumaier M, Shively L, Chen FS, et al. Cloning of the genes for T84.66, an antibody that has a high specificity and affinity for carcinoembryonic antigen, and expression of chimeric human/mouse T84.66 genes in myeloma and Chinese hamster ovary cells. Cancer Res. 1990; 50: 2128-2134.

[132]

Hansen HJ, Goldenberg DM, Newman ES, Grebenau R, Sharkey RM. Characterization of second-generation monoclonal antibodies against carcinoembryonic antigen. Cancer. 1993; 71: 3478-3485.

[133]

Sharkey RM, Juweid M, Shevitz J, et al. Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res. 1995; 55: 5935s-5945s.

[134]

Wu AM, Yazaki PJ, Tsai S, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci USA. 2000; 97: 8495-8500.

[135]

Koppe MJ, Bleichrodt RP, Oyen WJ, Boerman OC. Radioimmunotherapy and colorectal cancer. Br J Surg. 2005; 92: 264-276.

[136]

Thor A, Ohuchi N, Szpak CA, Johnston WW, Schlom J. Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res. 1986; 46: 3118-3124.

[137]

Molinolo A, Simpson JF, Thor A, Schlom J. Enhanced tumor binding using immunohistochemical analyses by second generation anti-tumor-associated glycoprotein 72 monoclonal antibodies versus monoclonal antibody B72.3 in human tissue. Cancer Res. 1990; 50: 1291-1298.

[138]

Johnson VG, Schlom J, Paterson AJ, Bennett J, Magnani JL, Colcher D. Analysis of a human tumor-associated glycoprotein (TAG-72) identified by monoclonal antibody B72.3. Cancer Res. 1986; 46: 850-857.

[139]

Sheer DG, Schlom J, Cooper HL. Purification and composition of the human tumor-associated glycoprotein (TAG-72) defined by monoclonal antibodies CC49 and B72.3. Cancer Res. 1988; 48: 6811-6818.

[140]

Colcher D, Minelli MF, Roselli M, Muraro R, Simpson-Milenic D. Schlom J. Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies. Cancer Res. 1988; 48: 4597-4603.

[141]

Yoon SO, Lee TS, Kim SJ, et al. Construction, affinity maturation, and biological characterization of an anti-tumor-associated glycoprotein-72 humanized antibody. J Biol Chem. 2006; 281: 6985-6992.

[142]

Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev. 2020; 49: 7856-7878.

[143]

Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007; 449: 1003-1007.

[144]

Schmohl JU, Vallera DA. CD133, selectively targeting the root of cancer. Toxins. 2016; 8: 165.

[145]

Yuan X, Gajan A, Chu Q, Xiong H, Wu K, Wu GS. Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev. 2018; 37: 733-748.

[146]

Françoso A, Simioni PU. Immunotherapy for the treatment of colorectal tumors: focus on approved and in-clinical-trial monoclonal antibodies. Drug Des Dev Ther. 2017; 11: 177-184.

[147]

Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10: 727-742.

[148]

Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM, Hashemy SI. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 2019; 110: 312-318.

[149]

Ziessman HA, O’Malley JP, Thrall JH. Chapter 9-Oncology. In: Ziessman HA, O’Malley JP, Thrall JH, eds. Nuclear Medicine. 3rd ed. Mosby; 2006: 263-301.

[150]

Bateman TM. Advantages and disadvantages of PET and SPECT in a busy clinical practice. J Nucl Cardiol. 2012; 19(suppl 1): S3-S11.

[151]

Liu Z, Dong C, Wang X, et al. Self-assembled biodegradable protein-polymer vesicle as a tumor-targeted nanocarrier. ACS Appl Mater Interfaces. 2014; 6: 2393-2400.

[152]

Li W, Ji YH, Li CX, et al. Evaluation of therapeutic effectiveness of (131)I-antiEGFR-BSA-PCL in a mouse model of colorectal cancer. World J Gastroenterol. 2016; 22: 3758-3768.

[153]

Abdel-Nabi HH, Schwartz AN, Higano CS, Wechter DG, Unger MW. Colorectal carcinoma: detection with indium-111 anticarcinoembryonic-antigen monoclonal antibody ZCE-025. Radiology. 1987; 164: 617-621.

[154]

Abdel-Nabi HH, Schwartz AN, Goldfogel G, et al. Colorectal tumors: scintigraphy with In-111 anti-CEA monoclonal antibody and correlation with surgical, histopathologic, and immunohistochemical findings. Radiology. 1988; 166: 747-752.

[155]

Kubo A, Nakamura K, Katayama M, Hashimoto S, Teramoto T, Kodaira S. Pharmacokinetic analysis of antibody localization in human colon cancer: comparison with immunoscintigraphy. Ann Nucl Med. 1992; 6: 21-27.

[156]

Oriuchi N, Endo K, Watanabe N, et al. Semiquantitative SPECT tumor uptake of technetium-99m-labeled anti-CEA monoclonal antibody in colorectal tumor. J Nucl Med. 1995; 36: 679-683.

[157]

Doerr RJ, Abdel-Nabi H. Baker JM, Steinberg S. Detection of primary colorectal cancer with indium 111 monoclonal antibody B72.3. Arch Surg. 1990; 125: 1601-1605.

[158]

Winzelberg GG, Grossman SJ, Rizk S, et al. Indium-111 monoclonal antibody B72.3 scintigraphy in colorectal cancer. Correlation with computed tomography, surgery, histopathology, immunohistology, and human immune response. Cancer. 1992; 69: 1656-1663.

[159]

Petersen BM Jr, Bass BL, Bates HR, Chandeysson PL, Harmon JW. Use of the radiolabeled murine monoclonal antibody, 111In-CYT-103, in the management of colon cancer. Am J Surg. 1993; 165: 137-142.

[160]

Walsh G, Walsh E. Biopharmaceutical benchmarks 2022. Nat Biotechnol. 2022; 40: 1722-1760.

[161]

Larson SM, El-Shirbiny AM. Divgi CR, et al. Single chain antigen binding protein (sFv CC49): first human studies in colorectal carcinoma metastatic to liver. Cancer. 1997; 80: 2458-2468.

[162]

Iznaga-Escobar N, Ramos-Suzarte M. Morales-Morales A, Torres-Arocha L. Rodríguez-Mesa N, Pérez-Rodriguez R. (99m)Tc-labeled murine ior C5 monoclonal antibody in colorectal carcinoma patients: pharmacokinetics, biodistribution, absorbed radiation doses to normal organs and tissues and tumor localization. Methods Find Exp Clin Pharmacol. 2004; 26: 687-696.

[163]

Zhou J, Ji Q, Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J Exp Clin Cancer Res. 2021; 40: 328.

[164]

Lindenberg L, Adler S, Turkbey IB, et al. Dosimetry and first human experience with 89Zr-panitumumab. Am J Nucl Med Mol Imaging. 2017; 7: 195-203.

[165]

Sharkey RM, Karacay H, Vallabhajosula S, et al. Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology. 2008; 246: 497-507.

[166]

Schoffelen R, van der Graaf WT, Sharkey RM, et al. Pretargeted immuno-PET of CEA-expressing intraperitoneal human colonic tumor xenografts: a new sensitive detection method. EJNMMI Res. 2012; 2: 5.

[167]

Touchefeu Y, Bailly C, Frampas E, et al. Promising clinical performance of pretargeted immuno-PET with anti-CEA bispecific antibody and gallium-68-labelled IMP-288 peptide for imaging colorectal cancer metastases: a pilot study. Eur J Nucl Med Mol Imag. 2021; 48: 874-882.

[168]

Patt YZ, Lamki LM, Haynie TP, et al. Improved tumor localization with increasing dose of indium-111-labeled anti-carcinoembryonic antigen monoclonal antibody ZCE-025 in metastatic colorectal cancer. J Clin Oncol. 1988; 6: 1220-1230.

[169]

Patt YZ, Lamki LM, Shanken J, et al. Imaging with indium111-labeled anticarcinoembryonic antigen monoclonal antibody ZCE-025 of recurrent colorectal or carcinoembryonic antigen-producing cancer in patients with rising serum carcinoembryonic antigen levels and occult metastases. J Clin Oncol. 1990; 8: 1246-1254.

[170]

Abdel-Nabi HH, Doerr RJ, Chan HW, et al. Safety and role of repeated administrations of Indium-111-labeled anti-carcinoembryonic antigen monoclonal antibody ZCE 025 in the postoperative follow-up of colorectal carcinoma patients. J Nucl Med. 1992; 33: 14-22.

[171]

Patt YZ, Podoloff DA, Curley S, et al. Monoclonal antibody imaging in patients with colorectal cancer and increasing levels of serum carcinoembryonic antigen. Experience with ZCE-025 and IMMU-4 monoclonal antibodies and proposed directions for clinical trials. Cancer. 1993; 71: 4293-4297.

[172]

Takenoshita S, Hashizume T, Asao T, et al. Immunoscintigraphy using 99mTc-labeled anti-CEA monoclonal antibody for patients with colorectal cancer. Anticancer Res. 1995; 15: 471-475.

[173]

Lacić M, Bokulić T, Lukac J, Baum RP, Kusić Z. Immunoscintigraphy with 99Tcm-labelled monoclonal anti-CEA BW 431/26 antibodies in patients with suspected recurrent and metastatic colorectal carcinoma: two-year follow-up. Nucl Med Commun. 1999; 20: 859-865.

[174]

de Gooyer JM, Elekonawo FMK, Bos DL, et al. Multimodal CEA-targeted image-guided colorectal cancer surgery using 111In-labeled SGM-101. Clin Cancer Res. 2020; 26: 5934-5942.

[175]

Hekman MCH, Rijpkema M, Bos DL, et al. Detection of micrometastases using SPECT/fluorescence dual-modality imaging in a CEA-expressing tumor model. J Nucl Med. 2017; 58: 706-710.

[176]

Rajkumar V, Goh V, Siddique M, et al. Texture analysis of (125)I-A5B7 anti-CEA antibody SPECT differentiates metastatic colorectal cancer model phenotypes and anti-vascular therapy response. Br J Cancer. 2015; 112: 1882-1887.

[177]

Griffin TW, Brill AB, Stevens S, et al. Initial clinical study of indium-111-labeled clone 110 anticarcinoembryonic antigen antibody in patients with colorectal cancer. J Clin Oncol. 1991; 9: 631-640.

[178]

Divgi CR, McDermott K, Griffin TW, et al. Lesion-by-lesion comparison of computerized tomography and indium-111-labeled monoclonal antibody C110 radioimmunoscintigraphy in colorectal carcinoma: a multicenter trial. J Nucl Med. 1993; 34: 1656-1661.

[179]

Lamki LM, Patt YZ, Rosenblum MG, et al. Metastatic colorectal cancer: radioimmunoscintigraphy with a stabilized In-111-labeled F(ab′)2 fragment of an anti-CEA monoclonal antibody. Radiology. 1990; 174: 147-151.

[180]

Chetanneau A, Barbet J, Peltier P, et al. Pretargetted imaging of colorectal cancer recurrences using an 111In-labelled bivalent hapten and a bispecific antibody conjugate. Nucl Med Commun. 1994; 15: 972-980.

[181]

Divgi CR, Scott AM, McDermott K, et al. Clinical comparison of radiolocalization of two monoclonal antibodies (mAbs) against the TAG-72 antigen. Nucl Med Biol. 1994; 21: 9-15.

[182]

Kostakoglu L, Divgi CR, Hilton S, et al. Preselection of patients with high TAG-72 antigen expression leads to targeting of 94% of known metastatic tumor sites with monoclonal antibody I-131-CC49. Cancer Invest. 1994; 12: 551-558.

[183]

Scott AM, Macapinlac HA, Divgi CR, et al. Clinical validation of SPECT and CT/MRI image registration in radiolabeled monoclonal antibody studies of colorectal carcinoma. J Nucl Med. 1994; 35: 1976-1984.

[184]

Welt S, Divgi CR, Scott AM, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol. 1994; 12: 1193-1203.

[185]

Ciprotti M, Tebbutt NC, Lee FT, et al. Phase I imaging and pharmacodynamic trial of CS-1008 in patients with metastatic colorectal cancer. J Clin Oncol. 2015; 33: 2609-2616.

[186]

Noguera EC, Palazzo E, Mayoraz MF, et al. Technetium-bevacizumab in a patient with bone and lung metastatic colon adenocarcinoma. J Clin Oncol. 2013; 31: e170-e172.

[187]

Swayne LC, Goldenberg DM, Diehl WL, Macaulay RD, Derby LA, Trivino JZ. SPECT anti-CEA monoclonal antibody detection of occult colorectal carcinoma metastases. Clin Nucl Med. 1991; 16: 849-852.

[188]

Willkomm P, Bender H, Bangard M, Decker P, Grünwald F, Biersack HJ. FDG PET and immunoscintigraphy with 99mTc-labeled antibody fragments for detection of the recurrence of colorectal carcinoma. J Nucl Med. 2000; 41: 1657-1663.

[189]

Wegener WA, Petrelli N, Serafini A, Goldenberg DM. Safety and efficacy of arcitumomab imaging in colorectal cancer after repeated administration. J Nucl Med. 2000; 41: 1016-1020.

[190]

Erb DA, Nabi HA. Clinical and technical considerations for imaging colorectal cancers with technetium-99m-labeled antiCEA Fab′ fragment. J Nucl Med Technol. 2000; 28: 12-18.

[191]

Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK. Recent trends in antibody-based oncologic imaging. Cancer Lett. 2012; 315: 97-111.

[192]

Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: from lab to clinical development. J Contr Release. 2021; 340: 1-34.

[193]

Bohdiewicz PJ, Scott GC, Juni JE, et al. Indium-111 OncoScint CR/OV and F-18 FDG in colorectal and ovarian carcinoma recurrences. Early observations. Clin Nucl Med. 1995; 20: 230-236.

[194]

Markowitz A, Saleemi K, Freeman LM. Role of In-111 labeled CYT-103 immunoscintigraphy in the evaluation of patients with recurrent colorectal carcinoma. Clin Nucl Med. 1993; 18: 685-700.

[195]

Doerr RJ, Herrera L, Abdel-Nabi H. In-111 CYT-103 monoclonal antibody imaging in patients with suspected recurrent colorectal cancer. Cancer. 1993; 71: 4241-4247.

[196]

Vijayakumar V, Blend MJ, Johnson D, Schnobrich K, Golick J. Detection of recurrent colon cancer with In-111 labeled MoAb B72.3 in a patient with normal CEA and TAG-72 levels. Clin Nucl Med. 1992; 17: 180-184.

[197]

Moffat FL Jr, Vargas-Cuba RD. Serafini AN, et al. Preoperative scintigraphy and operative probe scintimetry of colorectal carcinoma using technetium-99m-88BV59. J Nucl Med. 1995; 36: 738-745.

[198]

Krause BJ, Baum RP, Staib-Sebler E. Lorenz M, Niesen A, Hör G. Human monoclonal antibody 99mTc-88BV59: detection of colorectal cancer, recurrent or metastatic disease and immunogenicity assessment. Eur J Nucl Med. 1997; 24: 72-75.

[199]

Serafini AN, Klein JL, Wolff BG, et al. Radioimmunoscintigraphy of recurrent, metastatic, or occult colorectal cancer with technetium 99m-labeled totally human monoclonal antibody 88BV59: results of pivotal, phase III multicenter studies. J Clin Oncol. 1998; 16: 1777-1787.

[200]

Wolff BG, Bolton J, Baum R, et al. Radioimmunoscintigraphy of recurrent, metastatic, or occult colorectal cancer with technetium Tc 99m 88BV59H21-2V67-66 (HumaSPECT-Tc), a totally human monoclonal antibody. Patient management benefit from a phase III multicenter study. Dis Colon Rectum. 1998; 41: 953-962.

[201]

Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019; 25(6): 954-961.

[202]

Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imag. 2019; 46(13): 2746-2759.

[203]

Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and promises of PET radiomics. Int J Radiat Oncol Biol Phys. 2018; 102(4): 1083-1089.

[204]

Piñeiro-Fiel M, Moscoso A, Pubul V, Ruibal Á, Silva-Rodríguez J, Aguiar P. A systematic review of PET textural analysis and radiomics in cancer. Diagnostics. 2021; 11(2): 380.

[205]

Zhou Y, Ma XL, Zhang T, Wang J, Zhang T, Tian R. Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach. Eur J Nucl Med Mol Imag. 2021; 48(9): 2904-2913.

[206]

McGale JP, Chen DL, Trebeschi S, et al. Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol. 2024; 34(9): 5829-5841.

[207]

Cysouw MCF, Jansen BHE, van de Brug T, et al. Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer. Eur J Nucl Med Mol Imag. 2021; 48(2): 340-349.

[208]

Hyun SH, Ahn MS, Koh YW, Lee SJ. A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med. 2019; 44(12): 956-960.

[209]

Avanzo M, Wei L, Stancanello J, et al. Machine and deep learning methods for radiomics. Med Phys. 2020; 47(5): e185.

[210]

He J, Wang Q, Zhang Y, Wu H, Zhou Y, Zhao S. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on 18F-FDG PET/CT and machine learning. Ann Nucl Med. 2021; 35(5): 617-627.

[211]

Alongi P, Stefano A, Comelli A, et al. Artificial intelligence applications on restaging [18F]FDG PET/CT in metastatic colorectal cancer: a preliminary report of morpho-functional radiomics classification for prediction of disease outcome. Appl Sci. 2022; 12(6): 2941.

[212]

Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010; 138(6): 2073-2087.e3.

[213]

Kim S, Lee JH, Park EJ, et al. Prediction of microsatellite instability in colorectal cancer using a machine learning model based on PET/CT radiomics. Yonsei Med J. 2023; 64(5): 320.

[214]

Li J, Yang Z, Xin B, et al. Quantitative prediction of microsatellite instability in colorectal cancer with preoperative PET/CT-based radiomics. Front Oncol. 2021; 11: 702055.

[215]

Lv L, Xin B, Hao Y, et al. Radiomic analysis for predicting prognosis of colorectal cancer from preoperative 18F-FDG PET/CT. J Transl Med. 2022; 20(1): 66.

[216]

Kamath AV. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol. 2016; 21-22: 75-83.

[217]

Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: a challenge for personalized medicine? Int J Mol Sci. 2018; 19(12): 3733.

[218]

Klee GG. Human anti-mouse antibodies. Arch Pathol Lab Med. 2000; 124(6): 921-923.

[219]

Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. mAbs. 2010; 2(3): 256-265.

[220]

Brix G, Lechel U, Glatting G, et al. J Nucl Med. 2005; 46: 608.

[221]

Hendry JH, Simon SL, Wojcik A, et al. J Radiol Prot. 2009; 29(2A): A29-A42.

[222]

Cai H, Shi Q, Tang Y, et al. Positron emission tomography imaging of platelet-derived growth factor receptor β in colorectal tumor xenograft using zirconium-89 labeled dimeric affibody molecule. Mol Pharm. 2019; 16(5): 1950-1957.

[223]

Rosestedt M, Andersson KG, Mitran B, et al. Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. Int J Oncol. 2017; 51(6): 1765-1774.

[224]

Orlova A, Malm M, Rosestedt M, et al. Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule. Eur J Nucl Med Mol Imag. 2014; 41(7): 1450-1459.

[225]

Yun M, Kim DY, Lee JJ, et al. A high-affinity repebody for molecular imaging of EGFR-expressing malignant tumors. Theranostics. 2017; 7(10): 2620-2633.

[226]

Børresen B, Hansen AE, Fliedner FP, et al. Noninvasive molecular imaging of the enhanced permeability and retention effect by 64Cu-liposomes: in vivo correlations with 68Ga-RGD, fluid pressure, diffusivity and 18F-FDG. Int J Nanomed. 2020; 15: 8571-8581.

[227]

Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci USA. 2018; 115(45): 11454-11459.

[228]

Engudar G, Schaarup-Jensen H. Fliedner FP, et al. Remote loading of liposomes with a 124I-radioiodinated compound and their in vivo evaluation by PET/CT in a murine tumor model. Theranostics. 2018; 8(21): 5828-5841.

[229]

Jing B, Qian R, Jiang D, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J Nanobiotechnol. 2021; 19(1): 151.

[230]

Jing B, Gai Y, Qian R, et al. Hydrophobic insertion-based engineering of tumor cell-derived exosomes for SPECT/NIRF imaging of colon cancer. J Nanobiotechnol. 2021; 19(1): 7.

[231]

Khosroshahi AG, Amanlou M, Sabzevari O, et al. A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging. Curr Med Chem. 2013; 20(1): 123-133.

[232]

Chen MH, Chang CH, Chang YJ, et al. MicroSPECT/CT imaging and pharmacokinetics of 188Re-(DXR)-liposome in human colorectal adenocarcinoma-bearing mice. Anticancer Res. 2010; 30: 65-72.

[233]

Weissinger M, Vogel J, Kupferschläger J, et al. Correlation of C-arm CT acquired parenchymal blood volume (PBV) with 99mTc-macroaggregated albumin (MAA) SPECT/CT for radioembolization work-up. PLoS One. 2020; 15(12): e0244235.

[234]

Tsai CC, Chang CH, Chen LC, et al. Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice. Int J Nanomed. 2011; 6: 2607-2619.

[235]

Chen LC, Chang CH, Yu CY, et al. Pharmacokinetics, micro-SPECT/CT imaging and therapeutic efficacy of 188Re-DXR-liposome in C26 colon carcinoma ascites mice model. Nucl Med Biol. 2008; 35(8): 883-893.

[236]

Qin K, Xin S, Li G, et al. In vivo near-infrared fluorescence and SPECT-CT imaging of colorectal cancer using the bradykinin B2R-specific ligand icatibant. J Photochem Photobiol, B. 2023; 239: 112648.

[237]

Wang S, Zhu H, Li Y, et al. First-in-human DR5 PET reveals insufficient DR5 expression in patients with gastrointestinal cancer. J Immunother Cancer. 2021; 9(7): e002926.

[238]

Du J, An ZJ, Huang ZF, et al. Novel insights from spatial transcriptome analysis in solid tumors. Int J Biol Sci. 2023; 19(15): 4778-4792.

[239]

Rao BH, Souček P, Hlaváč V. Laser capture microdissection: a gear for pancreatic cancer research. Int J Mol Sci. 2022; 23: 14566.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Intelligent Medicine published by John Wiley & Sons Australia, Ltd on behalf of Tianjin University.

AI Summary AI Mindmap
PDF

605

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/