This review comprehensively assesses the epidemiology, interaction, and impact on patient outcomes of perioperative sleep disorders (SD) and perioperative neurocognitive disorders (PND) in the elderly. The incidence of SD and PND during the perioperative period in older adults is alarmingly high, with SD significantly contributing to the occurrence of postoperative delirium. However, the clinical evidence linking SD to PND remains insufficient, despite substantial preclinical data. Therefore, this study focuses on the underlying mechanisms between SD and PND, underscoring that potential mechanisms driving SD-induced PND include uncontrolled central nervous inflammation, blood–brain barrier disruption, circadian rhythm disturbances, glial cell dysfunction, neuronal and synaptic abnormalities, impaired central metabolic waste clearance, gut microbiome dysbiosis, hippocampal oxidative stress, and altered brain network connectivity. Additionally, the review also evaluates the effectiveness of various sleep interventions, both pharmacological and nonpharmacological, in mitigating PND. Strategies such as earplugs, eye masks, restoring circadian rhythms, physical exercise, noninvasive brain stimulation, dexmedetomidine, and melatonin receptor agonists have shown efficacy in reducing PND incidence. The impact of other sleep-improvement drugs (e.g., orexin receptor antagonists) and methods (e.g., cognitive-behavioral therapy for insomnia) on PND is still unclear. However, certain drugs used for treating SD (e.g., antidepressants and first-generation antihistamines) may potentially aggravate PND. By providing valuable insights and references, this review aimed to enhance the understanding and management of PND in older adults based on SD.
This study aimed to evaluate the efficacy and safety of remimazolam for intraoperative sedation during regional anesthesia. It was a phase II-multicenter, randomized, single-blind, parallel-group, active-controlled clinical trial (No. ChiCTR2100054956). From May 6, 2021 to July 4, 2021, patients were randomly enrolled from 17 hospitals in China. A total of 105 patients aged 18–65 years who underwent selective surgery under regional anesthesia were included. Patients received different sedatives with different dosages: 0.1 mg/kg remimazolam (HR), 0.05 mg/kg remimazolam (LR), or 1.0 mg/kg propofol (P) group, followed by a maintenance infusion. Main outcome measures included the efficacy of sedation measured by Modified Observer’s Assessment of Alertness/Sedation Scale (MOAA/S) levels (1–4, 1–3, 2–3, 3, and 2–4) during the sedation procedure (the duration percentage) and incidence of adverse reactions. It showed that the duration percentage of MOAA/S levels 1–4 was 100.0 [8.1]% (median [interquartile range]), 89.9 [20.2]%, 100.0 [7.7]% in the HR, LR, and P groups, respectively. The percentage of patients in the HR, LR, and P groups who achieved MOAA/S levels 1–4 within 3 min after administration was 85.7%, 58.8%, and 82.9%, respectively. However, the time to recovery from anesthesia after withdrawal of sedatives (7.9 ± 5.7 min), incidence of anterograde amnesia (75%), and adverse effects were not statistically significant among the three groups. These findings suggest that a loading dose of remimazolam 0.1 mg/kg followed by a maintenance infusion of 0–3 mg/kg/h provides adequate sedation for patients under regional anesthesia without increasing adverse reactions.
Neurodegenerative diseases represent an increasingly burdensome challenge of the past decade, primarily driven by the global aging of the population. Ongoing efforts focus on implementing diverse strategies to mitigate the adverse effects of neurodegeneration, with the goal of decelerating the pathology progression. Notably, in recent years, it has emerged that the use of nanoparticles (NPs), particularly those obtained through green chemical processes, could constitute a promising therapeutic approach. Green NPs, exclusively sourced from phytochemicals, are deemed safer compared to NPs synthetized through conventional chemical route. In this study, the effects of green chemistry-derived silver NPs (AgNPs) were assessed in neuroblastoma cells, SHSY-5Y, which are considered a pivotal model for investigating neurodegenerative diseases. Specifically, we used two different concentrations (0.5 and 1 µM) of AgNPs and two time points (24 and 48 h) to evaluate the impact on neuroblastoma cells by observing viability reduction and intracellular calcium production, especially using 1 μM at 48 h. Furthermore, investigation using atomic force microscopy (AFM) unveiled an alteration in Young’s modulus due to the reorganization of cortical actin following exposure to green AgNPs. This evidence was further corroborated by confocal microscopy acquisitions as well as coherency and density analyses on actin fibers. Our in vitro findings suggest the potential efficacy of green AgNPs against neurodegeneration; therefore, further in vivo studies are imperative to optimize possible therapeutic protocols.
Recent research has shown that tau protein can be passed to neighboring cells, leading to cellular senescence in the endothelial cells present in the central nervous system (CNS). This discovery could potentially open new doors for testing novel therapeutic compounds that specifically target senescent cells (senolytics) or for identifying new biomarkers that can enable early detection of tauopathies and dementia.
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Cervical medial branch block (CMBB) has been recognized as an effective treatment for cervicogenic pain. Previous studies mostly used ultrasound-guided out-of-plane puncture for CMBB, while this prospective study was designed to investigate the efficacy of ultrasound-guided in-plane puncture, specifically focusing on the new target of CMBB for cervical pain. This study includes two parts: the accuracy study (N = 15, CMBB was completed by ultrasound and confirmed by computed tomography [CT], in which a good distribution percentage of the analgesic solution was observed) and the efficacy study (N = 40, CMBB was completed by ultrasound or CT, while the proportion of pain relief (numerical rating scale) decrease by more than 50% postoperatively was analyzed). The results showed that the good distribution percentage of the analgesic solution was 97.8%. Furthermore, in the early period (30min and 2 h postoperatively), the proportion of patients with pain relief was lower in the ultrasound group than that in the CT group, especially at 2 h postoperatively (52% vs. 94%). However, at 24 h postoperatively and later, the proportion of patients with pain relief gradually stabilized to about 60%–70%, and lasted for about 2 weeks to 1 month. Therefore, the new target for CMBB, guided by ultrasound in-plane, offers high visibility and accuracy. A single CMBB performed under ultrasound guidance resulted in pain relief comparable to that of a CT-guided procedure (1 day to 1 month postoperatively). This study indicated that CMBB guided by ultrasound in-plane could be regarded as a promising approach for treatment of cervicogenic pain.
Glioma, a malignant brain tumor originating from neural glial cells, presents significant treatment challenges. However, the underlying mechanisms of glioma development are not fully understood, and effective targets are lacking. This study provides insights into the role of insulin-like growth factor 2 messenger RNA-binding protein 2 (IGF2BP2) in glioma progression and its therapeutic potential. Our analysis illustrated that elevated IGF2BP2 expression associated with significantly shorter survival among patients with lowgrade glioma (LGG) in The Cancer Genome Atlas (TCGA) database. IGF2BP2 depletion led to compromised cell viability, G0/G1 phase arrest, and reduced colony-formation ability. Furthermore, ultrastructural analysis and mCherry-GFP-LC3 reporter assay revealed an increased abundance of autophagosomes upon IGF2BP2 knockdown. Western blot analysis corroborated these findings by showing reduced p62 levels coupled with increased LC3-ІІ/LC3-I ratio upon IGF2BP2 knockdown. A multicolor immunohistochemistry assay demonstrated the positive correlation between IGF2BP2 and p62 expression in glioma patient samples. Additionally, our analysis suggested a link between IGF2BP2 expression and drug-resistant markers in TCGA-LGG samples, and Cell Counting Kit-8 cell viability assay revealed that knockdown of IGF2BP2 sensitized cells to temozolomide treatment. This comprehensive exploration unveils the role of IGF2BP2 in glioma progression, shedding light on autophagy modulation and chemosensitization strategies for glioma therapy.
Self-management is important for patients suffering from cerebrovascular events after neurosurgical procedures. An increasing number of artificial intelligence (AI)- assisted tools have been used in postoperative health management. ChatGPT is a new trend dialog-based chatbot that could be used as a supplemental tool for seeking health information. Responses fromChatGPT version 3.5 and 4.0 toward 13 questions raised by experienced neurosurgeons were evaluated in this exploratory study for their consistency and appropriateness blindly by the other three neurosurgeons. The readability of response text was investigated quantitively by word count and the Gunning Fog and Flesch-Kincaid indices. Results showed that the chatbot could provide relatively stable output between the two versions on consistency and appropriateness (χ2=0.348). As for readability, there was a higher demand for readers to comprehend the output text in the 4.0 version (more counts of words; lower Flesch-Kincaid reading ease score; and higher Flesch-Kincaid grade level). In general, the capacity of ChatGPT to deliver effective health information is still under debate.
The Perrotta Integrative Clinical Interview, second version (PICI-2) requires structural and functional updates, based on clinical and academic experience, especially in terms of functional traits and interpretation of psychopathological disorders. The Perrotta Integrative Clinical Interviews-3 (PICI- 3) was created and structured into four sections, dedicated to dysfunctional traits in children and pre-adolescents (PICI-C-3, 8–13 years) and in adolescents, adults, and the elderly (PICI-TA-3, 14–90 years), to common secondary disorders (PICI-DS-3, 8–90 years) and functional traits (PICI-FT-3, 8–90 years), with the identification of all functional elements and structural aspects of personality according to the model underlying the PICI (IPM). Selecting 1732 subjects, between 8 and 90 years old, the statistical analysis showed that the psychometric test has a well-defined and stable construct, with the variables well represented and positively correlated with other constructs already validated. In particular: (a) the PICI-TA-3 (Section A) was compared with the Minnesota Multiphasic Personality Inventory-2- Restructured Form (MMPI-2-RF), obtaining 99.3% compatibility of results, with a Pearson’s coefficient (R) of 0.999 and p 0.001; (b) the PICI-C-3 (Section B) was compared with the Child Behavior Checklist (CBCL), obtaining 94.1% compatibility of results, with a Pearson coefficient (R) of 0.969 and p < 0.001; (c) the PICI-FT-3 (Section D) was compared with the Big Five Personality Test (Big5), obtaining 89.4% compatibility of results, with a Pearson coefficient (R) of 0.797 and p < 0.001. The PICI-3 is a valid, efficient, and effective psychometric tool to identify the functioning or dysfunction of personality traits for psychopathological diagnosis.
Post-traumatic stress disorder (PTSD), currently included by the Diagnostic and Statistical of Mental Disorders, Fifth Edition, Text Revision in the macrocategory “disorders related to traumatic and stressful events”, is a severe mental distress that arises acutely as a result of direct or indirect exposure to severely stressful and traumatic events. A large body of literature is available on the psychological and behavioral manifestations of PTSD; however, with regard to the more purely neuropsychological aspects of the disorder, they are still the subject of research and need greater clarity, although the roles of the thalamus, hypothalamus, amygdala, cingulate gyrus, cerebellum, locus coeruleus, and hippocampus in the onset of the disorder’s characteristic symptoms have already been elucidated.
Acute ischemic stroke is a significant health concern worldwide, often leading to long-term disability and decreased quality of life. Rapid and appropriate treatment is crucial for achieving optimal outcomes in these patients. Intravenous thrombolysis (IVT) and mechanical thrombectomy (MT) are two commonly used interventions for acute ischemic stroke, but their effectiveness in improving neurological symptoms and functional outcomes in patients with hemiplegia remains uncertain. The aim of this work was to evaluate the impact of IVT and MT within a 4.5-h time frame on patients with acute ischemic stroke and hemiplegia. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta- Analyses guidelines. Relevant studies that assessed the impact of IVT and MT within 4.5-h on hemiplegia in patients with an acute ischemic stroke were included. Data were extracted and analyzed to determine the overall effects of these interventions. Most included case reports indicate positive outcomes in terms of neurological symptom improvement and functional recovery in patients with hemiplegia after receiving IVT and MT within the specified time frame. However, the heterogeneity among the patients and the limited use of IVT due to contraindications posed challenges in determining the most effective treatment option. The findings from the included studies demonstrate that both interventions led to a decrease in National Institutes of Health Stroke Scale scores, indicating an improvement in neurological symptoms. The results highlight the beneficial effects of early thrombolytic interventions and MT on the neurological status and functional outcomes of patients with an acute ischemic stroke.
Numerous brain diseases have been attributed to abnormalities in the connections of neural circuits. Exploration of neural circuits may give enlightenment in treating some intractable brain diseases. Here, we screened all publications on neural circuits in the Web of Science database from 2007 to 2022 and analyzed the research trends through VOSviewer, CiteSpace, Microsoft Excel 2019, and Origin. The findings revealed a consistent upward trend in research on neural circuits during this period. The United States emerged as the leading contributor, followed by China and Japan. Among the top 10 institutions with the largest number of publications, both the United States and China have a strong presence. Notably, the Chinese Academy of Sciences demonstrated the highest publication output, closely followed by Stanford University. In terms of influential authors, Karl Deisseroth stood out as one of the most prominent investigators. During this period, the majority of publications and citations on neural circuit research were found in highly influential journals including NEURON, NATURE JOURNAL OF NEUROSCIENCE, and so forth. Keyword clustering analysis highlighted the increasing focus on neural circuits and photogenetics in neuroscience research, and the reconstruction of neural circuits has emerged as a crucial research direction in brain science. In conclusion, over the past 15 years, the increasing high-quality publications have facilitated research development of neural circuits, indicating a promising prospect for investigations on neurological and psychiatric diseases.
Neuroinflammation induced by engulfment of synapses by phagocytic microglia plays a crucial role in neuropathic pain. Stauntonia chinensis is extracted from Stauntonia chinensis DC, which has been used as a traditional Chinese medicine to control trigeminal neuralgia or sciatica. However, the specific anti-neuralgia mechanism of Stauntonia chinensis is unknown. In this study, the analgesic effect of Stauntonia chinensis injection (SCI) in mice with neuropathic pain and the possible mechanisms are explored. We find that a local injection of 0.1 mL Stauntonia chinensis for 14 days can considerably relieve mechanical hyperalgesia and thermal hyperalgesia in mice with sciatic chronic constriction injury (CCI). Immunofluorescence staining shows that SCI reduces neuroinflammation in the spinal cord of CCI mice. RNA sequencing reveals that the expression of postsynaptic density protein 95 (PSD-95), a postsynaptic scaffold protein, is downregulated in the spinal cord of CCI mice, but upregulated after SCI administration. Immunofluorescence experiments also demonstrate that SCI administration reverses microglia proliferation and PSD-95 downregulation in CCI mice. These data suggest that SCI relieves neuropathic pain by increasing the expression of PSD-95 and reducing the proliferation of phagocytic microglia.