Apr 2024, Volume 10 Issue 4
    

  • Select all
  • REVIEW
    Muhammad Abu Talha Safdar Hashmi, Hooriya Fatima, Sadia Ahmad, Amna Rehman, Fiza Safdar
    2024, 10(4): 395-426. https://doi.org/10.1002/ibra.12183
    PDF

    Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.

  • REVIEW
    Xin Li, Zhisheng Ba, Juan Huang, Jianhua Chen, Jinyu Jiang, Nanqu Huang, Yong Luo
    2024, 10(4): 427-438. https://doi.org/10.1002/ibra.12176
    PDF

    Alzheimer’s disease (AD) is a neurodegenerative disease, which is mainly characterized by the abnormal deposition of β-amyloid peptide (Aβ) and Tau. Since Tau aggregation is more closely associated with synaptic loss, neurodegeneration, and cognitive decline than Aβ, the correlation between Tau and cognitive function in AD has gradually gained attention. The posttranslational modifications (PTMs) of Tau are key factors contributing to its pathological changes, which include phosphorylation, acetylation, ubiquitination, glycosylation, glycation, small ubiquitin-like modifier mediated modification (SUMOylation), methylation, succinylation, etc. These modifications change the structure of Tau, regulating Tau microtubule interactions, localization, degradation, and aggregation, thereby affecting its propensity to aggregate and leading to neuronal injury and cognitive impairments. Among numerous PTMs, drug development based on phosphorylation, acetylation, ubiquitination, and SUMOylation primarily involves enzymatic reactions, affecting either the phosphorylation or degradation processes of Tau. Meanwhile, methylation, glycosylation, and succinylation are associated with maintaining the structural stability of Tau. Current research is more extensive on phosphorylation, acetylation, ubiquitination, and methylation, with related drugs already developed, particularly focusing on phosphorylation and ubiquitination. In contrast, there is less research on SUMOylation, glycosylation, and succinylation, requiring further basic research, with the potential to become novel drug targets. In conclusion, this review summarized the latest research on PTMs of Tau and related drugs, highlighting the potential of targeting specific PTMs for developing novel therapeutic strategies in AD.

  • REVIEW
    Anna Sara Liberati, Giulio Perrotta
    2024, 10(4): 439-449. https://doi.org/10.1002/ibra.12177
    PDF

    Tic disorders represent a developmental neuropsychiatric condition whose causes can be attributed to a variety of environmental, neurobiological, and genetic factors. From a neurophysiological perspective, the disorder has classically been associated with neurochemical imbalances (particularly dopamine and serotonin) and structural and functional alterations affecting, in particular, brain areas and circuits involved in the processing and coordination of movements: the basal ganglia, thalamus, motor cortical area, and cingulate cortex; however, more recent research is demonstrating the involvement of many more brain regions and neurotransmission systems than previously observed, such as the prefrontal cortex and cerebellum. In this paper, therefore, we summarize the evidence to date on these abnormalities with the intent to illustrate and clarify the main neuroanatomical differences between patients with tic disorders and healthy individuals.

  • REVIEW
    Chun-Chun Tang, De-Xing Liu, Zhao-Qiong Zhu
    2024, 10(4): 450-461. https://doi.org/10.1002/ibra.12136
    PDF

    Perioperative neurocognitive disorder (PND) is a common complication in the perioperative period, which not only prolongs the hospitalization of patients, increases the cost of treatment, but even increases the postoperative mortality of patients, bringing a heavy burden to families and society. Mechanism exploration involves anesthesia and surgery that lead to microglial activation, promote the synthesis and secretion of inflammatory factors, cause an inflammatory cascade, aggravate nerve cell damage, and lead to cognitive dysfunction. It is believed that microglia-mediated neuroinflammatory responses play a vital role in the formation of PND. Microglia surface receptors are essential mediators for microglia to receive external stimuli, regulate microglial functional status, and carry out intercellular signal transmission. Various microglial surface receptors trigger neuroinflammation, damage neurons, and participate in the development and progression of PND by activating microglia. In this study, the roles of immunoglobulin receptors, chemokine receptors, purinergic receptors, and pattern recognition receptors in microglia surface receptors in PND were reviewed, to provide a reference for the mechanism research, prevention, and treatment of PND.

  • REVIEW
    Kevin Fang
    2024, 10(4): 462-476. https://doi.org/10.1002/ibra.12185
    PDF

    The immune response in the central nervous system (CNS) is a highly specialized and tightly regulated process essential for maintaining neural health and protecting against pathogens and injuries. The primary immune cells within the CNS include microglia, astrocytes, T cells, and B cells. They work together, continuously monitor the CNS environment for signs of infection, injury, or disease, and respond by phagocytosing debris, releasing cytokines, and recruiting other immune cells. In addition to providing neuroprotection, these immune responses must be carefully balanced to prevent excessive inflammation that can lead to neuronal damage and contribute to neurodegenerative diseases. Dysregulated immune responses in the CNS are implicated in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Wnt signaling is a crucial pathway in the CNS that regulates various cellular processes critical for brain development, function, and maintenance. Despite enhancing immune responses in the health CNS, dysregulated Wnt signaling exacerbates neuroinflammation in the neurodegenerative brains. This review summarized the role of Wnt signaling in regulating immune response under different conditions. We then examined the role of immune response in healthy brains and during the development of neurodegenerative diseases. We also discussed therapeutic intervention in various neurodegenerative diseases through the modulation of the Wnt signaling pathway and neuroinflammation and highlighted challenges and limitations in current clinical trials.

  • REVIEW
    Jie Yu, Yun-Xin Chen, Jin-Wei Wang, Hai-Tao Wu
    2024, 10(4): 477-487. https://doi.org/10.1002/ibra.12153
    PDF

    Traumatic brain injury (TBI) is a common disease with a high rate of death and disability, which poses a serious threat to human health; thus, the effective treatment of TBI has been a high priority. The brain-gut-microbial (BGM) axis, as a bidirectional communication network for information exchange between the brain and gut, plays a crucial role in neurological diseases. This article comprehensively explores the interrelationship between the BGM axis and TBI, including its physiological effects, basic pathophysiology, and potential therapeutic strategies. It highlights how the bidirectional regulatory pathways of the BGM axis could provide new insights into clinical TBI treatment and underscores the necessity for advanced research and development of innovative clinical treatments for TBI.

  • REVIEW
    Mengdan Su, Tianhong Wang, Congcong Zou, Keyu Cao, Fei Liu
    2024, 10(4): 488-499. https://doi.org/10.1002/ibra.12181
    PDF

    Dementia represents a significant health issue, afflicting both patients and their families. To assess the global trends in the incidence, prevalence, mortality, and disability-adjusted life years (DALYs) of Alzheimer’s disease (AD) and other dementias in the elderly population, the Global Burden of Disease Study (1999–2019) was used. The average annual percentage change (AAPC) was estimated using linear regression. Stratified analysis of the global trends by age, sex, region, national level, and social development index (SDI) were also performed. The global incidence of AD and other dementias increased from 507.96 per 100,000 in 1990 to 569.39 per 100,000 in 2019, showing a significant increase in this period. In males, the incidence increased from 387.56 per 100,000 population in 1990 to 462.40 per 100,000 in 2019 (AAPC = 0.61), whereas females experienced a slower rise (AAPC = 0.31) and had a higher incidence in 2019 (662.93 per 100,000 population). The most significant increase was observed in individuals aged 60–64 and those in the middle-SDI quintile. Regionally, the high-income Asia Pacific had the highest incidence (890.01 per 100,000 population) and DALYs (3043.86 per 100,000) in AD and other dementias in 2019. As for national trends, Japan had the most pronounced increase in the incidence and DALYs of AD and other dementias during the 1990–2019 period. These findings highlight the growing burden of dementias on life expectancy at a population level, which is significant for healthcare professionals and decision-makers to conduct the ongoing debate on the policy of AD and other dementias.

  • ORIGINAL ARTICLE
    Shaun Cade, Clive Prestidge, Xin-Fu Zhou, Larisa Bobrovskaya
    2024, 10(4): 500-518. https://doi.org/10.1002/ibra.12187
    PDF

    Alzheimer’s disease (AD) is a common cause of dementia characterized by the presence of two proteinaceous deposits in the brain. These pathologies may be a consequence of complex interactions between neurons and glia before the onset of cognitive impairments. Curcumin, a bioactive compound found in turmeric, is a promising candidate for AD because it alleviates neuropathologies in mouse models of the disease. Although its clinical efficacy has been hindered by low oral bioavailability, the development of new formulations may overcome this limitation. The purpose of this study was to determine the effects of a bioavailable curcumin formulation in a mouse model of AD. The formulation was administered to mice in drinking water after encapsulation into micelles using a previously validated method. A neuropathological assessment was performed to determine if it slows or alters the course of the disease. Cognitive performance was not included because it had already been assessed by a previous study. The bioavailable curcumin formulation was unable to alter the size or number of amyloid plaques in a transgenic mouse model. In addition, mechanisms that regulate amyloid beta production were unchanged, suggesting that the disease had not been altered. The number of reactive astrocytes in the hippocampus and dentate gyrus was not altered by curcumin. However, protein levels of glial fibrillary acidic protein were increased overall in the brain, suggesting that it may have aggravated neuroinflammation. Therefore, a higher dosage, despite its enhanced oral bioavailability, may have a potential risk for neuroinflammation.

  • ORIGINAL ARTICLE
    Yang-Yang Zhao, Li-Xia Yang, Shuang-Yu Que, Lei-Xing An, Abeer A. Teeti, Shun-Wu Xiao
    2024, 10(4): 519-535. https://doi.org/10.1002/ibra.12165
    PDF

    This study aims to investigate the systemic mechanism of Panax notoginseng saponins (PNS) in antiaging using network pharmacology combined with experimental validation. String database and Cytoscape3.7.2 were used to perform the protein–protein interaction (PPI) and construct genes network. The key target genes were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, the aging-related genes were verified by reverse-transcription polymerase chain reaction in SAM-P/8 mice, and performed molecular docking with the main components of PNS. Moreover, it produced cluster between Hub genes and differential genes. A total of 169 crossover genes were obtained, and the results of GO and KEGG indicated that the antiaging effect of PNS was mediated by apoptosis, cancer, and neurodegeneration and that five of the eight Hub genes had good binding activity with the main components of PNS. In addition, animal experiments reported that MAP2, MAPKK4, RAB6A, and Sortilin-1 have different levels of expression in the brain tissues of aging mice, and bind well docking with the main active components of PNS. However, there was no crossover between the 169 PNS intersecting genes and the four differential genes, while they yielded a link from PPI in which MAP2K4 was only linked to AKT1 and CASP3; MAP2 was only linked to AKT1 and CASP3; RAB6A was only linked to AKT1; but Sortlin-1 did not link to the Hub genes. In summary, the antiaging effect of PNS is associated with the eight Hub genes and four differential genes. All of them consist of a cluster or group that is possibly related to the antiaging effect of PNS.

  • LETTER
    Si-Yu Yan, Yi-Fan Liu, Yi-Cheng Zhou, Yuan Gao, Yang Wu, Hao Deng, Cheng-Hao Yang, Jun-Wen Guan, Wei Wang, Rui Tian
    2024, 10(4): 536-541. https://doi.org/10.1002/ibra.12178
    PDF

    The management of deep brain stimulation (DBS)-related surgical site infection (SSI) is challenging. This article aimed to report the efficacy of negative pressure wound therapy (NPWT) in treating DBS-related SSI while preserving all DBS devices. As a retrospective case series in a single center, localized DBS-related SSI was treated with complete debridement and NPWT, with preserving all DBS devices. Successful infection control was defined as no clinical or microbiological evidence of recurrent infection 3 months after NPWT. Five patients (three females, two males, median age: 64 years) received NPWT for their DBS-related SSI. The infection was located in the chest, parietal, and retroauricular areas. Only one patient had the extension wires removed due to the heavy contamination, while no DBS devices were removed in the other patients. All patients showed successful infection control without any remarkable side effects 3 months after debridement and NPWT. These findings suggest that NPWT may effectively promote wound healing with a high probability of preserving all DBS devices in DBS-related SSI.

  • CASE REPORT
    Xiao-Yan Yang, Yong-Su Zheng, Jin-Mei Tuo, Hai-Qing Zhang, Zu-Cai Xu
    2024, 10(4): 542-546. https://doi.org/10.1002/ibra.12096
    PDF

    A 48-year-old female patient was hospitalized for 5 days after a cold. Encephalitis was considered after preliminary history and routine examination, but the patient did not show significant improvement after antiviral treatment. At this time, magnetic resonance imaging indicated pituitary atrophy, and the patient’s medical history was assessed. She had a history of postpartum bleeding and amenorrhea 15 years ago. The supplementary examination indicated hormonal abnormalities. These suggested that the patient may have had Sheehan’s syndrome (SS). After hormone supplementation treatment for 10 days, her condition improved. This case suggested that in female patients with neuropsychiatric disorders with a history of previous postpartum hemorrhage, attention needs to be paid to screening for SS to improve the related diagnosis and treatment rate.

  • ERRATUM
    2024, 10(4): 547-547. https://doi.org/10.1002/ibra.12188
    PDF