Investigating the role of SARM1 in central nervous system

Junjie Wang , Yuhang Shi , Jinglei Tian , Liming Tang , Fang Cao

Ibrain ›› 2025, Vol. 11 ›› Issue (3) : 297 -305.

PDF
Ibrain ›› 2025, Vol. 11 ›› Issue (3) : 297 -305. DOI: 10.1002/ibra.12173
REVIEW

Investigating the role of SARM1 in central nervous system

Author information +
History +
PDF

Abstract

Sterile-α and Toll/interleukin 1 receptor (TIR) motif-containing protein 1 (SARM1), a key intracellular molecule that plays numerous important biological functions in the nervous system, has attracted much attention. Recent studies have shown that SARM1 plays a key role in nerve injury, degeneration, and neurodegenerative diseases. Therefore, understanding the role of SARM1 in the central nervous system (CNS) will enhance our knowledge of the pathogenesis of CNS diseases and aid in the development of new therapeutic strategies. This review will explore the biological functions of SARM1 in the nervous system and its potential roles in nerve injury and disease, thus providing new directions for future research and treatment.

Keywords

brain / central nervous system disease / SARM1 / Wallerian degeneration

Cite this article

Download citation ▾
Junjie Wang, Yuhang Shi, Jinglei Tian, Liming Tang, Fang Cao. Investigating the role of SARM1 in central nervous system. Ibrain, 2025, 11(3): 297-305 DOI:10.1002/ibra.12173

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunbar AJ, Rampal RK, Levine R. Leukemia secondary to myeloproliferative neoplasms. Blood. 2020; 136(1): 61-70.

[2]

Liu C, Zhao W, Zhang L, Sun H, Chen X, Deng N. Preparation of DSPE-PEG-cRGD modified cationic liposomes for delivery of OC-2 shRNA and the antitumor effects on breast cancer. Pharmaceutics. 2022; 14(10):2157.

[3]

Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic Stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 2017; 25(8): 1782-1789.

[4]

Wang SW, Gao C, Zheng YM, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 2022; 21(1): 57.

[5]

Bradford KL, Moretti FA, Carbonaro-Sarracino DA, Gaspar HB, Kohn DB. Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID): molecular pathogenesis and clinical manifestations. J Clin Immunol. 2017; 37(7): 626-637.

[6]

Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J. The SARM1 Toll/Interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron. 2017; 93(6): 1334-1343.e5.

[7]

Fazal SV, Mutschler C, Chen CZ, et al. SARM1 detection in myelinating glia: sarm1/Sarm1 is dispensable for PNS and CNS myelination in zebrafish and mice. Front Cell Neurosci. 2023; 17:1158388.

[8]

Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain. 2016; 139(Pt 12): 3092-3108.

[9]

Bosanac T, Hughes RO, Engber T, et al. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain. 2021; 144(10): 3226-3238.

[10]

Cheng Y, Liu J, Luan Y, et al. Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice. Diabetes. 2019; 68(11): 2120-2130.

[11]

Henninger N, Bouley J, Sikoglu EM, et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain. 2016; 139(Pt 4): 1094-1105.

[12]

Hughes RO, Bosanac T, Mao X, et al. Small molecule SARM1 inhibitors recapitulate the SARM1(-/-) phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Rep. 2021; 34(1):108588.

[13]

Maynard ME, Redell JB, Zhao J, et al. Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury. Exp Neurol. 2020; 327:113207.

[14]

Choi HMC, Li Y, Suraj D, et al. Autophagy protein ULK1 interacts with and regulates SARM1 during axonal injury. Proc Natl Acad Sci USA. 2022; 119(47):e2203824119.

[15]

Miao X, Wu Q, Du S, et al. SARM1 promotes neurodegeneration and memory impairment in mouse models of Alzheimer's disease. Aging Dis. 2024; 15(1): 390-407.

[16]

Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife. 2022; 11:e73557.

[17]

Ge YJ, Ou YN, Deng YT, et al. Prioritization of drug targets for neurodegenerative diseases by integrating genetic and proteomic data from brain and blood. Biol Psychiatry. 2023; 93(9): 770-779.

[18]

Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci. 2021; 24(5): 371-383.

[19]

Jin L, Zhang J, Hua X, et al. Astrocytic SARM1 promotes neuroinflammation and axonal demyelination in experimental autoimmune encephalomyelitis through inhibiting GDNF signaling. Cell Death Dis. 2022; 13(9): 759.

[20]

Zhang J, Jin L, Hua X, et al. SARM1 promotes the neuroinflammation and demyelination through IGFBP2/NF-κB pathway in experimental autoimmune encephalomyelitis mice. Acta Physiologica. 2023; 238(2):e13974.

[21]

Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol Neurodegener. 2022; 17(1): 1.

[22]

Bratkowski M, Burdett TC, Danao J, et al. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron. 2022; 110(22): 3711-3726.e16.

[23]

Shi Y, Kerry PS, Nanson JD, et al. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol Cell. 2022; 82(9): 1643-1659.e10.

[24]

Essuman K, Summers DW, Sasaki Y, et al. TIR domain proteins are an ancient family of NAD(+)-consuming enzymes. Curr Biol. 2018; 28(3): 421-430.e4.

[25]

Brace EJ, Essuman K, Mao X, et al. Distinct developmental and degenerative functions of SARM1 require NAD+ hydrolase activity. PLoS Genet. 2022; 18(6):e1010246.

[26]

Gürtler C, Carty M, Kearney J, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014; 192(10): 4821-4832.

[27]

Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z. The NAD(+)-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature. 2020; 588(7839): 658-663.

[28]

Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 2013; 339(6118): 452-456.

[29]

Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein perlecan disrupts axonal and synaptic stability during Drosophila development. eLife. 2023; 12:e88273.

[30]

Kong L, Valdivia DO, Simon CM, et al. Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA. Sci Transl Med. 2021; 13(578):eabb6871.

[31]

Simkins TJ, Duncan GJ, Bourdette D. Chronic demyelination and axonal degeneration in multiple sclerosis: pathogenesis and therapeutic implications. Curr Neurol Neurosci Rep. 2021; 21(6): 26.

[32]

Cervellini I, Galino J, Zhu N, Allen S, Birchmeier C, Bennett DL. Sustained MAPK/ERK activation in adult Schwann cells impairs nerve repair. J Neurosci. 2018; 38(3): 679-690.

[33]

Mietto BS, Jhelum P, Schulz K, David S. Schwann cells provide iron to axonal mitochondria and its role in nerve regeneration. J Neurosci. 2021; 41(34): 7300-7313.

[34]

Alexandris AS, Lee Y, Lehar M, et al. Traumatic axonopathy in spinal tracts after impact acceleration head injury: ultrastructural observations and evidence of SARM1-dependent axonal degeneration. Exp Neurol. 2023; 359:114252.

[35]

Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR. Injury-induced inhibition of bystander neurons requires dSarm and signaling from glia. Neuron. 2021; 109(3): 473-487.e5.

[36]

Li Y, Pazyra-Murphy MF, Avizonis D, et al. Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. J Cell Biol. 2022; 221(2):e202106080.

[37]

Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD(+) depletion. eLife. 2016; 5:e19749.

[38]

Yaku K, Okabe K, Nakagawa T. NAD metabolism: implications in aging and longevity. Ageing Res Rev. 2018; 47: 1-17.

[39]

Osterloh JM, Yang J, Rooney TM, et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science. 2012; 337(6093): 481-484.

[40]

DiAntonio A, Milbrandt J, Figley MD. The SARM1 TIR NADase: mechanistic similarities to bacterial phage defense and toxin-antitoxin systems. Front Immunol. 2021; 12:752898.

[41]

Wang Q, Zhang S, Liu T, et al. Sarm1/Myd88-5 regulates neuronal intrinsic immune response to traumatic axonal injuries. Cell Rep. 2018; 23(3): 716-724.

[42]

Carty M, Bowie AG. SARM: from immune regulator to cell executioner. Biochem Pharmacol. 2019; 161: 52-62.

[43]

Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J. SARM1 activation triggers axon degeneration locally via NAD⁺ destruction. Science. 2015; 348(6233): 453-457.

[44]

Marion CM, McDaniel DP, Armstrong RC. Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp Neurol. 2019; 321:113040.

[45]

Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019; 216(4): 743-756.

[46]

Liu H, Zhang J, Xu X, et al. SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-κB signaling. Theranostics. 2021; 11(9): 4187-4206.

[47]

Lin CW, Hsueh YP. Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain Behav Immun. 2014; 37: 142-151.

[48]

Lehmann S, Loh SH, Martins LM. Enhancing NAD(+) salvage metabolism is neuroprotective in a PINK1 model of Parkinson's disease. Biol Open. 2017; 6(2): 141-147.

[49]

Chen CY, Lin CW, Chang CY, Jiang ST, Hsueh YP. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J Cell Biol. 2011; 193(4): 769-784.

[50]

Sorrentino V, Romani M, Mouchiroud L, et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017; 552(7684): 187-193.

[51]

Ghosh D, Levault KR, Brewer GJ. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons. Aging cell. 2014; 13(4): 631-640.

[52]

Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci USA. 2010; 107(43): 18670-18675.

[53]

Li WH, Huang K, Cai Y, et al. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. eLife. 2021; 10:e67381.

[54]

Lu Q, Zhang Y, Botchway BOA, Huang M, Liu X. Syntaphilin inactivation can enhance axonal mitochondrial transport to improve spinal cord injury. Mol Neurobiol. 2023; 60(11): 6556-6565.

[55]

Marzan DE, Brügger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL. Activated microglia drive demyelination via CSF1R signaling. GLIA. 2021; 69(6): 1583-1604.

[56]

Sarkar A, Dutta S, Sur M, Chakraborty S, Dey P, Mukherjee P. Early loss of endogenous NAD(+) following rotenone treatment leads to mitochondrial dysfunction and Sarm1 induction that is ameliorated by PARP inhibition. FEBS J. 2023; 290(6): 1596-1624.

[57]

Calabrese V, Renis M, Calderone A, Russo A, Barcellona ML, Rizza V. Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radic Biol Med. 1996; 20(3): 391-397.

[58]

Mancuso C, Capone C, Ranieri SC, et al. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J Neurosci Res. 2008; 86(10): 2235-2249.

[59]

Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signaling. 2010; 13(11): 1763-1811.

RIGHTS & PERMISSIONS

2024 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/