Small ubiquitin-like modifiers inhibitors lower blood pressure via ERK5/KLF2-dependent upregulation of the eNOS/NO pathway
Nannan Tang , Jiatong Li , Zhuo Wang , Jinlu Zuo , Zifeng Zhang , Di Huang , Yannan Han , Yuqing Chen , Yilin Sun , Xiang Li , Ruxue Mu , Qingxue Ma , Jie Zhang , Jiaying Wu , He Wang , Hongxia Zhao , Xingli Dong , Zhiguo Wang , Yu Liu , Dan Zhao , Baofeng Yang
Frigid Zone Medicine ›› 2024, Vol. 4 ›› Issue (4) : 202 -211.
Small ubiquitin-like modifiers inhibitors lower blood pressure via ERK5/KLF2-dependent upregulation of the eNOS/NO pathway
Background Small ubiquitin-like modifiers (SUMO)ylation is a dynamic and reversible post-translational modification playing pivotal roles in the regulation of cancer, diabetes, heart failure, and neurological diseases. However, whether SUMO inhibitors also have anti-hypertension effect remains yet to be explored. Methods Blood pressure was monitored in spontaneously hypertensive rats (SHR) after Tannic acid (TA) administration for 4 weeks. The contents of nitric oxide (NO) and endothelin-1 (ET-1) in the serum of SHR were measured. Isolated endothelium-intact mesenteric artery rings were used to study relaxation effect of SUMO inhibitors. ERK5 SUMOylation was determined using coimmunoprecipitation (co-IP) and immunofluorescence (IF). NO levels were analyzed by IF. The expression levels of KLF2 and p-eNOS were semiquantified by Western blot analysis. The transcriptional activity of eNOS promotor was assayed using ChIP-PCR. Results Three SUMO inhibitors all reduced the phenylephrine (PE)-induced contraction of mesenteric artery rings in a concentration-dependent manner. Co-IP revealed that ponatinib promoted ERK5 SUMOylation, which was nulled following pretreatment with the SUMO inhibitors. IF displayed that TA increased ERK5 accumulation and its co-localization with SUMO-1 in the nucleus. ChIP-PCR unveiled TA-induced enhancement of KLF2-dependent eNOS promoter activity and upregulation of eNOS/NO expression in HUVECs. In vivo, TA significantly lowered the blood pressure and improved the vascular reactivity by activating the KLF2/eNOS/NO pathway. Additionally, the level of NO was elevated along with decreased ET-1 levels in the serum of SHR. Conclusion SUMO inhibitors inhibit ERK5 SUMOylation to promote KLF2-eNOS/NO signaling, indicating their therapeutic potential for the treatment of hypertension.
hypertension / SUMO inhibitor / ERK5 / SUMOylation / KLF2
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |