In this paper, the mechanical behavior of sand, was systematically described and modeled with a elastoplastic model proposed by Zhang et al. [
There is increasing interest in the use of earthen construction materials, such as rammed earth, due to their inherent sustainability. These materials have been used by man for thousands of years and some of the earliest examples can be found in China. Features of the structures of these materials arise from the means of production. In particular, in situ earthen construction materials exhibit strong anisotropy due to their layered nature. A more subtle structure effect arises from the way that the earth mixture is deposited. This paper reviews and discusses stratification effects in dry soil mixtures, including some original experimental work, and indicates some links between the features of the dry mixtures and earthen construction materials. Improved understanding of the physical processes in play will allow more accurate specification of these materials in the future, and hence spread their use.
In the context of research into deep nuclear waste disposal, various works have concerned the hydromechanical behavior of Boom clay, a stiff plastic clay extracted in the SCK-CEN Underground Research Laboratory near the Mol City (Belgium), at a depth of 223 m. Due to some amount of smectite minerals in the clay fraction, Boom clay exhibits swelling properties when hydrated under low stresses. To investigate some aspects of the hydromechanical behavior of Boom clay, oedometer compression tests were carried out on samples of Boom clay close to saturation and submitted to an initial suction. During oedometer compression, the changes in suction with increased vertical stress are monitored by means of a high capacity tensiometer installed at the bottom of the sample. Some aspects related to hydromechanical couplings are examined through the investigation of the changes in suction during oedometer compression, a somewhat delicate and poorly documented experimental approach. A comparison is also made with a completely different soil sample under suction, i.e. a statically compacted unsaturated low plasticity silt. Some technical difficulties typical of this new experimental approach are first described in detail so as to optimize the interpretation of the data obtained. The experiment allows the determination of the point at which suction is changed to positive pressure during compression. Below this point, the ratio between the vertical stress and the change in suction are determined. Above this point, the data show that positive pore pressures are dissipated in a common way. The suction/stress behavior during unloading is also described and discussed. Finally, an interpretation in terms of microstructure effects is provided for both samples. The experimental approach initiated here seems to provide interesting further application to better understand hydromechanical couplings in natural soils in relation with suction increase during stress release.
This paper presents an uncoupled state space solution to three-dimensional consolidation of layered poroelastic medium with anisotropic permeability and compressible pore fluid. Starting from the basic equations of poroelastic medium, and introducing intermediate variables, the state space equation usually comprising eight coupled state vectors is uncoupled into two sets of equations of six and two state vectors in the Laplace-Fourier transform domain. Combined with the continuity conditions between adjacent layers and boundary conditions, the uncoupled state space solution of a layered poroelastic medium is obtained by using the transfer matrix method. Numerical results show that the anisotropy of permeability and the compressibility of pore fluid have remarkable influence on the consolidation behavior of poroelastic medium.
We present a new method to model fracture of concrete based on energy minimisation. The concrete is considered on the mesoscale as composite consisting of cement paste, aggregates and micro pores. In this first step, the alkali-silica reaction is taken into account through damage mechanics though the process is more complex involving thermo-hygro-chemo-mechanical reaction. We use a non-local damage model that ensures the well-posedness of the boundary value problem (BVP). In contrast to existing methods, the interactions between degrees of freedom evolve with the damage evolutions. Numerical results are compared to analytical and experimental results and show good agreement.
The lining of shield tunnel is usually composed of segments, in which the joints, cracks, and the grouting holes (hereafter called lining deficit) exist. During the long-term running, soils and groundwater may leak from these kinds of lining deficit. The leaking of soil and groundwater causes the long-term ground loss around tunnel and thus results in the settlement of ground surface. This paper aims to analyze the impact of the leakage of groundwater through segments on the long-term settlement of ground surface. The adopted analytical method is based on the theory of groundwater seepage by using numerical simulation. The analyzed results show that settlement of ground surface increases gradually with the increase of the leaked volume of tunnel segments. When the leaked volume was unevenly distributed, differential settlement occurred locally. Comparative analysis by changing the leaked volume was conducted. The results reveal that there is a linear relationship between settlement and leaked volume when the leaked volume was controlled within the allowable limit.
Numerical simulations of longitudinal wave propagation in a rock bar with microcracks are conducted by using the numerical manifold method which has great advantages in the simulation of discontinuities. Firstly, validation of the numerical manifold method is carried out by simulations of a longitudinal stress wave propagating through intact and cracked rock bars. The behavior of the stress wave traveling in a one-dimensional rock bar with randomly distributed microcracks is subsequently studied. It is revealed that the highly defected rock bar has significant viscoelasticity to the stress wave propagation. Wave attenuation as well as time delay is affected by the length, quantity, specific stiffness of the distributed microcracks as well as the incident stress wave frequency. The storage and loss moduli of the defected rock are also affected by the microcrack properties; however, they are independent of incident stress wave frequency.
To improve the understanding on the failure behavior and its anchoring effect of weak-broken rock slope, the rock of grade IV according to China is taken as reference prototype, and a series of model tests were carried out in laboratory. These tests can be divided into two categories, that is, with bolt reinforcement and without bolt reinforcement. In which, the stability of slope reinforced with different bolt diameter, different anchor length and different space are studied. The test results show that the collapse of slope is the combination of tension failure at the top and the compression-shearing failure at the bottom of the slope, and its failure process presents progressive characteristics. The contributions of bolt reinforcement are mainly reflected by the aspects of shear resistance, crack resistance and anti-extension. The reinforcement of blot not only can improve the vertical bearing capacity before failure, but also can reduce the vertical settlement and allow greater lateral rock wall deformation; what is more, the stress concentration degree in rock mass can be dispersed, which do help to improve the stability of slope rock mass.
In this paper, an experimental investigation is conducted to study the mechanical behavior of saturated natural loess, saturated natural filling in ground fissure and their corresponding saturated remoulded soils under three consolidated undrained triaxial stress tests, namely, conventional triaxial compression test (CTC), triaxial compression test (TC) and reduced triaxial compression test (RTC). The test results show that stress-strain relation, i.e. strain-softening or strain-hardening, is remarkably influenced by the structure, void ratio, stress path and confining pressure. Natural structure, high void ratio, TC stress path, RTC stress path and low confining pressures are favorable factors leading to strain-softening. Excess pore pressure during shearing is significantly affected by stress path. The tested soils are different from loose sand on character of strain-softening and are different from common clay on excess pore water pressure behavior. The critical states in
Surcharge load (e.g. embankment fill) will induce settlement and outward lateral displacement, while vacuum pressure will induce settlement and inward lateral displacement of a ground. Ideally, combination of surcharge load and vacuum pressure can reduce or minimize the lateral displacement. Laboratory large scale model (length: 1.50 m, width: ~0.62 m, height: 0.85 m) tests and finite element analyses (FEA) were conducted to investigate the main influencing factors on lateral displacement of a soft clayey ground under the combination of vacuum pressure and surcharge load. For the conditions investigated, the results indicate that the outward lateral displacement increases with the increase of the ratio of surcharge load to vacuum pressure (