Multi-scale deep learning framework for three dimensional printed self-sensing cementitious composites with hybrid nano-carbon fillers
Bhupesh P. NANDURKAR , Jayant M. RAUT , Pawan K. HINGE , Boskey V. BAHORIA , Tejas R. PATIL , Sachin UPADHYE , Nilesh SHELKE , Vikrant S. VAIRAGADE
Front. Struct. Civ. Eng. ›› 2025, Vol. 19 ›› Issue (6) : 872 -891.
Multi-scale deep learning framework for three dimensional printed self-sensing cementitious composites with hybrid nano-carbon fillers
This study presents a multi-scale deep-learning framework that integrates several advanced neural models to optimize hybrid three dimensional (3D) printed self-sensing nano-carbon cementitious composites. The first step was undertaken by Multi-Scale Graph Neural Network, where special conductive pathways were taught ensuring the uniform work on nano-carbon learning patterns, improving electrical conductivity by 25%–35%. four-dimensional Spatiotemporal Transformer Network decoded printing parameters achievements with an interlayer conductivity improvement of 40%–50%, avoiding anisotropic print by aiming for defects prediction on print Induced anisotropic behavior. High-fidelity artificial microstructures have been generated with Physics Informed Generative Adversarial Networks; these synthetic methods realize an experimental cost-cutting of about 50% while conserving about 98% fidelity to the characteristics of real microstructures. Fifth, Self-Supervised Contrastive Learning automatically classifies small macro and microdefects with over 95% detection reliability. There has been reduction of as much as 35% in the number of false positives. Predicted kinetics of hydration and long-term electrical stability can now be predicted with speed improvements of 15% and resistance drift reduction by 20% over six months. This approach for the first time combines different hybrid models of deep learning for the self-sensing cementitious composites, thus significantly increasing percolation of electrical networks, accuracy in crack detection, and predictions on long-term durability. The developed framework creates a new paradigm in the real-time structural health monitoring world, providing enhanced reliability in structures while also reducing costs at a level for the next generation of smart infrastructure sets.
nano-carbon fillers / self-sensing composites / structural health monitoring / deep learning / 3D printed concrete
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
Higher Education Press
/
| 〈 |
|
〉 |