Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes
Nabarun DEY, Aniruddha SENGUPTA
Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes
Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil. This paper presents the results of a series of centrifuge experiments and numerical analyses on a 55° inclined unsaturated sandy slope with less permeable, stronger silty sand layer inclusion within it. It is observed that a less permeable, stronger silty sand layer in an otherwise homogeneous sandy soil slope hinders the infiltration of water. The water content of the slope just above the stronger layer increases significantly, compared to elsewhere. No shear band is found to initiate in a homogeneous sandy soil slope, whereas for a non-homogeneous slope, they initiate just above the less pervious, stronger layer. A discontinuity of the shear zone is also observed for the case of a non-homogeneous soil slope. The factor of safety of a non-homogeneous, unsaturated soil slope decreases because of the less permeable, stronger layer. It decreases significantly if this less permeable, stronger soil layer is located near the toe of the slope.
non-homogeneous slope / stronger soil layer / factor of safety / centrifuge model test / unsaturated soils
[1] |
Brown W M, Sitar N, Saarinen T F, Blair M L. Overview and summary of debris flows, landslides, and floods in the San Francisco Bay region, January 1982. In: Conference on Debris Flows, Landslides, and Floods in the San Francisco Bay region. Stanford, CA: Stanford University, 1982
|
[2] |
Lagmay A M F, Ong J B T, Fernandez D F D, Lapus M R, Rodolfo R S, Tengonciang A M P, Soria J L A, Baliatan E G, Quimba Z L, Uichanco E, Paguican A. Scientists investigate recent Philippine landslide. American Geophysical Union, 2006, 87(12): 121–128
|
[3] |
Dey N, Sengupta A. Effect of rainfall on the triggering of the devastating slope failure at Malin, India. Natural Hazards, 2018, 94(3): 1391–1413
CrossRef
Google scholar
|
[4] |
Schuster R L, Salcedo D A, Valenzuela L. Overview of catastrophic landslides of South America in the twentieth century. Reviews in Engineering Geology, 2002, 15: 1–34
CrossRef
Google scholar
|
[5] |
Van Sint Jan M, Talloni P. Sediment flow 18 June 1991 in Antofagasta: La Serena, Chile. In: The Third Chilean Congress of Geotechnical Engineering. 1993, 1: 247–265
|
[6] |
Borja R, White J, Liu X, Wu W. Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(2): 236–248
CrossRef
Google scholar
|
[7] |
Wang D, Wang J, Wu J, Deng J, Sun M. A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations. Frontiers of Structural and Civil Engineering, 2019, 13(2): 337–352
CrossRef
Google scholar
|
[8] |
Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils. Canadian Geotechnical Journal, 1978, 15(3): 313–321
CrossRef
Google scholar
|
[9] |
Lu N, Wayllace A, Oh S. Infiltration-induced seasonally reactivated instability of a highway embankment near the Eisenhower Tunnel, Colorado, USA. Engineering Geology, 2013, 162: 22–32
CrossRef
Google scholar
|
[10] |
Vanapalli S K, Fredlund D G, Pufahl D E, Clifton A W. Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 1996, 33(3): 379–392
CrossRef
Google scholar
|
[11] |
Zhan L. Soil-water interaction in unsaturated expansive soil slopes. Frontiers of Structural and Civil Engineering, 2007, 1(2): 198–204
CrossRef
Google scholar
|
[12] |
Wilson C J, Dietrich W E. The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS-AISH Publication, 1987, 165: 49–59
|
[13] |
Wu J J, Li Y, Cheng Q G, Wen H, Liang X. A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC 3D. Frontiers of Structural and Civil Engineering, 2016, 10(1): 103–111
CrossRef
Google scholar
|
[14] |
Wu L Z, Huang R Q, Li H L, Li X, Sun P. The model tests of rainfall infiltration in two-layer unsaturated soil slopes. European Journal of Environmental and Civil Engineering, 2019, 23: 1–15
CrossRef
Google scholar
|
[15] |
Chatterjee D, Murali Krishna A. Stability analysis of two-layered non-homogeneous slopes. International Journal of Geotechnical Engineering, 2018, 3: 1–7
|
[16] |
Goh A T. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Canadian Geotechnical Journal, 1999, 36(2): 382–391
CrossRef
Google scholar
|
[17] |
Ho I H. Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer. International Journal of Geomechanics, 2015, 15(5): 06014025
CrossRef
Google scholar
|
[18] |
Al-Homoud A S, Tubeileh T K. Analysis and remedies of landslides of cut slopes due to the presence of weak cohesive layers within stronger formations. Environmental Geology, 1998, 33(4): 299–311
CrossRef
Google scholar
|
[19] |
Wang R, Zhang G, Zhang J M. Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions. Applied Clay Science, 2010, 50(3): 386–394
CrossRef
Google scholar
|
[20] |
GeoStudio. Tutorial Manual. GEO-SLOPE International Ltd, 2007
|
[21] |
Dell’Avanzi E, Zornberg J G, Cabral A R. Suction profiles and scale factors for unsaturated flow under increased gravitational field. Soil and Foundation, 2004, 44(3): 79–89
CrossRef
Google scholar
|
[22] |
Taylor R N. Geotechnical Centrifuge Technology. London: Taylor and Francis, 1995
|
[23] |
Ng C W W, Kamchoom V, Leung A K. Centrifuge modelling of the effects of root geometry on transpiration-induced suction and stability of vegetated slopes. Landslides, 2015, 13(5): 1–14
CrossRef
Google scholar
|
[24] |
Raj M, Sengupta A. Rain-triggered slope failure of the railway embankment at Malda, India. ActaGeotechnica, 2014, 9(5): 789–798
CrossRef
Google scholar
|
[25] |
Zhang M, Zhang J, Lai Y. Numerical analysis for critical height of railway embankment in permafrost regions of Qinghai-Tibetan plateau. Cold Regions Science and Technology, 2005, 41(2): 111–120
CrossRef
Google scholar
|
[26] |
White D J, Take W A. Geo-PIV: Particle Image Velocimetry (PIV) Software for Use in Geotechnical Testing. Technical Report. Cambridge: University of Cambridge, 2002
|
[27] |
Lu N, Likos W J. Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131–142
CrossRef
Google scholar
|
[28] |
Childs E C, Collis-George N. The permeability of porous materials. Proceedings of the Royal Society, 1950, 201(1066): 392–405
CrossRef
Google scholar
|
[29] |
Richards L A. Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1931, 1(5): 318–333
CrossRef
Google scholar
|
[30] |
van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44(5): 892–898
CrossRef
Google scholar
|
[31] |
Fredlund D G, Xing A. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 1994, 31(4): 521–532
CrossRef
Google scholar
|
[32] |
Bishop A W. The use of the slip circle in the stability analysis of slopes. Geotechnique, 1955, 5(1): 7–17
CrossRef
Google scholar
|
[33] |
Janbu N. Application of composite slip surfaces for stability analysis. In: Proceedings of European Conference on Stability of Earth Slopes. Stockholm, 1954, 3, 43–49
|
[34] |
Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
CrossRef
Google scholar
|
[35] |
Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
CrossRef
Google scholar
|
[36] |
Rabczuk T, Ren H, Zhuang X. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55
CrossRef
Google scholar
|
[37] |
Zhou S, Zhuang X, Rabczuk T. Phase-field modeling of fluid-driven dynamic cracking in porous media. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 169–198
CrossRef
Google scholar
|
[38] |
Zhou S, Zhuang X, Rabczuk T. Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 729–752
CrossRef
Google scholar
|
[39] |
Zhou S, Rabczuk T, Zhuang X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 2018, 122: 31–49
CrossRef
Google scholar
|
[40] |
Zhou S, Zhuang X, Rabczuk T. A phase-field modeling approach of fracture propagation in poroelastic media. Engineering Geology, 2018, 240: 189–203
CrossRef
Google scholar
|
[41] |
Zhou S, Zhuang X, Zhu H, Rabczuk T. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192
CrossRef
Google scholar
|
/
〈 | 〉 |