%A Nabarun DEY, Aniruddha SENGUPTA %T Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes %0 Journal Article %D 2020 %J Front. Struct. Civ. Eng. %J Frontiers of Structural and Civil Engineering %@ 2095-2430 %R 10.1007/s11709-020-0674-8 %P 1462-1475 %V 14 %N 6 %U {https://journal.hep.com.cn/fsce/EN/10.1007/s11709-020-0674-8 %8 2020-12-15 %X

Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil. This paper presents the results of a series of centrifuge experiments and numerical analyses on a 55° inclined unsaturated sandy slope with less permeable, stronger silty sand layer inclusion within it. It is observed that a less permeable, stronger silty sand layer in an otherwise homogeneous sandy soil slope hinders the infiltration of water. The water content of the slope just above the stronger layer increases significantly, compared to elsewhere. No shear band is found to initiate in a homogeneous sandy soil slope, whereas for a non-homogeneous slope, they initiate just above the less pervious, stronger layer. A discontinuity of the shear zone is also observed for the case of a non-homogeneous soil slope. The factor of safety of a non-homogeneous, unsaturated soil slope decreases because of the less permeable, stronger layer. It decreases significantly if this less permeable, stronger soil layer is located near the toe of the slope.