An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network

P. ZAKIAN

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 470 -479.

PDF (595KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 470 -479. DOI: 10.1007/s11709-017-0440-8
RESEARCH ARTICLE
RESEARCH ARTICLE

An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network

Author information +
History +
PDF (595KB)

Abstract

Since a lot of engineering problems are along with uncertain parameters, stochastic methods are of great importance for incorporating random nature of a system property or random nature of a system input. In this study, the stochastic dynamic analysis of soil mass is performed by finite element method in the frequency domain. Two methods are used for stochastic analysis of soil media which are spectral decomposition and Monte Carlo methods. Shear modulus of soil is considered as a random field and the seismic excitation is also imposed as a random process. In this research, artificial neural network is proposed and added to Monte Carlo method for sake of reducing computational effort of the random analysis. Then, the effects of the proposed artificial neural network are illustrated on decreasing computational time of Monte Carlo simulations in comparison with standard Monte Carlo and spectral decomposition methods. Numerical verifications are provided to indicate capabilities, accuracy and efficiency of the proposed strategy compared to the other techniques.

Keywords

stochastic analysis / random seismic excitation / finite element method / artificial neural network / frequency domain analysis / Monte Carlo simulation

Cite this article

Download citation ▾
P. ZAKIAN. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network. Front. Struct. Civ. Eng., 2017, 11(4): 470-479 DOI:10.1007/s11709-017-0440-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khaji NZakian P. Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method. Mechanics of Advanced Materials and Structures201724(12): 1030–1042

[2]

Zakian PKhaji NKaveh A. Graph theoretical methods for efficient stochastic finite element analysis of structures. Computers & Structures2017178: 29–46

[3]

Salavati M. Approximation of structural damping and input excitation force. Front. Struct. Civ. Eng.201711(2): 244–254

[4]

Clouteau DSavin EAubry D. Stochastic Simulations in Dynamic Soil–Structure Interaction. Meccanica200136(4): 379–399

[5]

Ghiocel DGhanem R. Stochastic Finite-Element Analysis of Seismic Soil–Structure Interaction. Journal of Engineering Mechanics2002128(1): 66–77

[6]

Ho Lee JKwan Kim JTassoulas J L. Stochastic dynamic analysis of a layered half-space. Soil Dynamics and Earthquake Engineering201348(0): 220–233

[7]

Mai CKonakli KSudret B. Seismic fragility curves for structures using non-parametric representations. Front. Struct. Civ. Eng.201711(2): 169–186

[8]

Vu-Bac NLahmer TZhuang XNguyen-Thoi TRabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software2016100: 19–31

[9]

Rahman M SYeh C H. Variability of seismic response of soils using stochastic finite element method. Soil Dynamics and Earthquake Engineering199918(3): 229–245

[10]

Yeh C HRahman M S. Stochastic finite element methods for the seismic response of soils. International Journal for Numerical and Analytical Methods in Geomechanics199822(10): 819–850

[11]

Zakian PKhaji N. A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica201651(4): 893–920

[12]

Zakian PKhaji N. Spectral finite element simulation of seismic wave propagation and fault dislocation in elastic media. Asian Journal of Civil Engineering201617(8): 1189–1213 (BHRC)

[13]

Ioannou IDouglas JRossetto T. Assessing the impact of ground-motion variability and uncertainty on empirical fragility curves. Soil Dynamics and Earthquake Engineering201569: 83–92

[14]

Vu-Bac NRafiee RZhuang XLahmer TRabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering201568: 446–464

[15]

Vu-Bac NLahmer TZhang YZhuang XRabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering201459: 80–95

[16]

Vu-Bac NLahmer TKeitel HZhao JZhuang XRabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials201468: 70–84

[17]

Ripley B D. Pattern recognition and neural networks: Cambridge university press, 2007

[18]

Luo F LUnbehauen R. Applied neural networks for signal processing: Cambridge University Press, 1998

[19]

Gholizadeh SSamavati O A. Structural optimization by wavelet transforms and neural networks. Applied Mathematical Modelling201135(2): 915–929

[20]

Papadrakakis MLagaros N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering2002191(32): 3491–3507

[21]

Yagawa GOkuda H. Neural networks in computational mechanics. Archives of Computational Methods in Engineering19963(4): 435–512

[22]

Lee S CHan S W. Neural-network-based models for generating artificial earthquakes and response spectra. Computers & Structures200280(20–21): 1627–1638

[23]

Bani–Hani KGhaboussi JSchneider S P. Experimental study of identification and control of structures using neural network. Part 1: Identification. Earthquake Engineering & Structural Dynamics199928(9): 995–1018

[24]

Hamdia K MLahmer TNguyen-Thoi TRabczuk T. Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS. Computational Materials Science2015102: 304–313

[25]

Hurtado J E. Analysis of one-dimensional stochastic finite elements using neural networks. Probabilistic Engineering Mechanics200217(1): 35–44

[26]

Papadrakakis MPapadopoulos VLagaros N D. Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering1996136(1–2): 145–163

[27]

Ray W CPenzien J. Dynamics of structures. Computers & Structures Inc, 2003

[28]

Hou S n. Earthquake simulation models and their applications: School of Engineering, Massachusetts Institute of Technology, 1968

[29]

Lutes L DSarkani S. Random vibrations: analysis of structural and mechanical systems: Butterworth-Heinemann, 2004

[30]

Ghanem R GSpanos P D. Stochastic Finite Elements: A Spectral Approach: Dover Publications, 2003

[31]

Demuth HBeale MWorks M. MATLAB: Neural Network Toolbox: User's Guide: Math Works, 1992

[32]

Lowe DBroomhead D. Multivariable functional interpolation and adaptive networks. Complex Systems19882: 321–355

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (595KB)

3440

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/