An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network

P. ZAKIAN

PDF(595 KB)
PDF(595 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 470-479. DOI: 10.1007/s11709-017-0440-8
RESEARCH ARTICLE
RESEARCH ARTICLE

An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network

Author information +
History +

Abstract

Since a lot of engineering problems are along with uncertain parameters, stochastic methods are of great importance for incorporating random nature of a system property or random nature of a system input. In this study, the stochastic dynamic analysis of soil mass is performed by finite element method in the frequency domain. Two methods are used for stochastic analysis of soil media which are spectral decomposition and Monte Carlo methods. Shear modulus of soil is considered as a random field and the seismic excitation is also imposed as a random process. In this research, artificial neural network is proposed and added to Monte Carlo method for sake of reducing computational effort of the random analysis. Then, the effects of the proposed artificial neural network are illustrated on decreasing computational time of Monte Carlo simulations in comparison with standard Monte Carlo and spectral decomposition methods. Numerical verifications are provided to indicate capabilities, accuracy and efficiency of the proposed strategy compared to the other techniques.

Keywords

stochastic analysis / random seismic excitation / finite element method / artificial neural network / frequency domain analysis / Monte Carlo simulation

Cite this article

Download citation ▾
P. ZAKIAN. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network. Front. Struct. Civ. Eng., 2017, 11(4): 470‒479 https://doi.org/10.1007/s11709-017-0440-8

References

[1]
Khaji N, Zakian P. Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method. Mechanics of Advanced Materials and Structures, 2017, 24(12): 1030–1042
CrossRef Google scholar
[2]
Zakian P, Khaji N, Kaveh A. Graph theoretical methods for efficient stochastic finite element analysis of structures. Computers & Structures, 2017, 178: 29–46
CrossRef Google scholar
[3]
Salavati M. Approximation of structural damping and input excitation force. Front. Struct. Civ. Eng., 2017, 11(2): 244–254
CrossRef Google scholar
[4]
Clouteau D, Savin E, Aubry D. Stochastic Simulations in Dynamic Soil–Structure Interaction. Meccanica, 2001, 36(4): 379–399
CrossRef Google scholar
[5]
Ghiocel D, Ghanem R. Stochastic Finite-Element Analysis of Seismic Soil–Structure Interaction. Journal of Engineering Mechanics, 2002, 128(1): 66–77
CrossRef Google scholar
[6]
Ho Lee J, Kwan Kim J, Tassoulas J L. Stochastic dynamic analysis of a layered half-space. Soil Dynamics and Earthquake Engineering, 2013, 48(0): 220–233
CrossRef Google scholar
[7]
Mai C, Konakli K, Sudret B. Seismic fragility curves for structures using non-parametric representations. Front. Struct. Civ. Eng., 2017, 11(2): 169–186
CrossRef Google scholar
[8]
Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
CrossRef Google scholar
[9]
Rahman M S, Yeh C H. Variability of seismic response of soils using stochastic finite element method. Soil Dynamics and Earthquake Engineering, 1999, 18(3): 229–245
CrossRef Google scholar
[10]
Yeh C H, Rahman M S. Stochastic finite element methods for the seismic response of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(10): 819–850
CrossRef Google scholar
[11]
Zakian P, Khaji N. A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica, 2016, 51(4): 893–920
CrossRef Google scholar
[12]
Zakian P, Khaji N. Spectral finite element simulation of seismic wave propagation and fault dislocation in elastic media. Asian Journal of Civil Engineering, 2016, 17(8): 1189–1213 (BHRC)
[13]
Ioannou I, Douglas J, Rossetto T. Assessing the impact of ground-motion variability and uncertainty on empirical fragility curves. Soil Dynamics and Earthquake Engineering, 2015, 69: 83–92
CrossRef Google scholar
[14]
Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
CrossRef Google scholar
[15]
Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
CrossRef Google scholar
[16]
Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
CrossRef Google scholar
[17]
Ripley B D. Pattern recognition and neural networks: Cambridge university press, 2007
[18]
Luo F L, Unbehauen R. Applied neural networks for signal processing: Cambridge University Press, 1998
[19]
Gholizadeh S, Samavati O A. Structural optimization by wavelet transforms and neural networks. Applied Mathematical Modelling, 2011, 35(2): 915–929
CrossRef Google scholar
[20]
Papadrakakis M, Lagaros N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 2002, 191(32): 3491–3507
CrossRef Google scholar
[21]
Yagawa G, Okuda H. Neural networks in computational mechanics. Archives of Computational Methods in Engineering, 1996, 3(4): 435–512
CrossRef Google scholar
[22]
Lee S C, Han S W. Neural-network-based models for generating artificial earthquakes and response spectra. Computers & Structures, 2002, 80(20–21): 1627–1638
CrossRef Google scholar
[23]
Bani–Hani K, Ghaboussi J, Schneider S P. Experimental study of identification and control of structures using neural network. Part 1: Identification. Earthquake Engineering & Structural Dynamics, 1999, 28(9): 995–1018
CrossRef Google scholar
[24]
Hamdia K M, Lahmer T, Nguyen-Thoi T, Rabczuk T. Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS. Computational Materials Science, 2015, 102: 304–313
CrossRef Google scholar
[25]
Hurtado J E. Analysis of one-dimensional stochastic finite elements using neural networks. Probabilistic Engineering Mechanics, 2002, 17(1): 35–44
CrossRef Google scholar
[26]
Papadrakakis M, Papadopoulos V, Lagaros N D. Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 1996, 136(1–2): 145–163
CrossRef Google scholar
[27]
Ray W C, Penzien J. Dynamics of structures. Computers & Structures Inc, 2003
[28]
Hou S n. Earthquake simulation models and their applications: School of Engineering, Massachusetts Institute of Technology, 1968
[29]
Lutes L D, Sarkani S. Random vibrations: analysis of structural and mechanical systems: Butterworth-Heinemann, 2004
[30]
Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach: Dover Publications, 2003
[31]
Demuth H, Beale M, Works M. MATLAB: Neural Network Toolbox: User's Guide: Math Works, 1992
[32]
Lowe D, Broomhead D. Multivariable functional interpolation and adaptive networks. Complex Systems, 1988, 2: 321–355

Abbreviations

ANN Artificial neural network
KL Karhunen–Loève
MC Monte Carlo
PC Polynomial chaos
RBF Radial basis function
SFEM Stochastic finite element method

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(595 KB)

Accesses

Citations

Detail

Sections
Recommended

/