Surface engineering of synthetic nanopores by atomic layer deposition and their applications

Ce-Ming WANG1, De-Lin KONG2, Qiang CHEN2(), Jian-Ming XUE1()

Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 335-349.

PDF(906 KB)
PDF(906 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (4) : 335-349. DOI: 10.1007/s11706-013-0218-4
REVIEW ARTICLE
REVIEW ARTICLE

Surface engineering of synthetic nanopores by atomic layer deposition and their applications

  • Ce-Ming WANG1, De-Lin KONG2, Qiang CHEN2(), Jian-Ming XUE1()
Author information +
History +

Abstract

In the past decade, nanopores have been developed extensively for various potential applications, and their performance greatly depends on the surface properties of the nanopores. Atomic layer deposition (ALD) is a new technology for depositing thin films, which has been rapidly developed from a niche technology to an established method. ALD films can cover the surface in confined regions even in nanoscale conformally, thus it is proved to be a powerful tool to modify the surface of the synthetic nanopores and also to fabricate complex nanopores. This review gives a brief introduction on nanopore synthesis and ALD fundamental knowledge, and then focuses on the various aspects of synthetic nanopores processing by ALD and their applications, including single-molecule sensing, nanofluidic devices, nanostructure fabrication and other applications.

Keywords

synthetic nanopore / atomic layer deposition (ALD) / surface engineering

Cite this article

Download citation ▾
Ce-Ming WANG, De-Lin KONG, Qiang CHEN, Jian-Ming XUE. Surface engineering of synthetic nanopores by atomic layer deposition and their applications. Front Mater Sci, 2013, 7(4): 335‒349 https://doi.org/10.1007/s11706-013-0218-4

References

[1] Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nature Nanotechnology , 2011, 6(10): 615–624
[2] Branton D, Deamer D W, Marziali A, . The potential and challenges of nanopore sequencing. Nature Biotechnology , 2008, 26(10): 1146–1153
[3] Dekker C. Solid-state nanopores. Nature Nanotechnology , 2007, 2(4): 209–215
[4] Chen P, Mitsui T, Farmer D B, . Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters , 2004, 4(7): 1333–1337
[5] Venkatesan B M, Dorvel B, Yemenicioglu S, . Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Advanced Materials , 2009, 21(27): 2771–2776
[6] Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics. Reviews of Modern Physics , 2008, 80(3): 839–883
[7] Karnik R, Fan R, Yue M, . Electrostatic control of ions and molecules in nanofluidic transistors. Nano Letters , 2005, 5(5): 943–948
[8] Cheng L J, Guo L J. Nanofluidic diodes. Chemical Society Reviews , 2010, 39(3): 923–938
[9] Martin C R. Nanomaterials: a membrane-based synthetic approach. Science , 1994, 266(5193): 1961–1966
[10] George S M. Atomic layer deposition: an overview. Chemical Reviews , 2010, 110(1): 111–131
[11] Puurunen R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics , 2005, 97(12): 121301 (52 pages)
[12] Elam J W, Routkevitch D, Mardilovich P P, . Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chemistry of Materials , 2003, 15(18): 3507–3517
[13] Gordon R G, Hausmann D, Kim E, . A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches. Chemical Vapor Deposition , 2003, 9(2): 73–78
[14] Cameron M A, Gartland I P, Smith J A, . Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: pore reduction and effect of surface species on gas transport. Langmuir , 2000, 16(19): 7435–7444
[15] Rhee M, Burns M A. Nanopore sequencing technology: research trends and applications. Trends in Biotechnology , 2006, 24(12): 580–586
[16] Li J, Stein D, McMullan C, . Ion-beam sculpting at nanometre length scales. Nature , 2001, 412(6843): 166–169
[17] Stein D, Li J, Golovchenko J A. Ion-beam sculpting time scales. Physical Review Letters , 2002, 89(27): 276106 (4 pages)
[18] Storm A J, Chen J H, Ling X S, . Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials , 2003, 2(8): 537–540
[19] Storm A J, Chen J H, Ling X S, . Electron-beam-induced deformations of SiO2 nanostructures. Journal of Applied Physics , 2005, 98(1): 014307 (8 pages)
[20] Krapf D, Wu M Y, Smeets R M M, . Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Letters , 2006, 6(1): 105–109
[21] Fischer B E, Spohr R. Production and use of nuclear tracks: imprinting structure on solids. Reviews of Modern Physics , 1983, 55(4): 907–948
[22] Wang C M, Wang L, Zhu X R, . Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. Lab on a Chip , 2012, 12(9): 1710–1716
[23] Spohr R. Method for producing nuclear traces or microholes originating from nuclear traces of an individual ion. US Patent , 4369370, 1983
[24] Apel P Y, Korchev Y E, Siwy Z, . Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 2001, 184(3): 337–346
[25] Stroeve P, Ileri N. Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology , 2011, 29(6): 259–266
[26] Masuda H, Yamada H, Satoh M, . Highly ordered nanochannel-array architecture in anodic alumina. Applied Physics Letters , 1997, 71(19): 2770–2772
[27] Smeets R M M, Keyser U F, Dekker N H, . Noise in solid-state nanopores. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(2): 417–421
[28] Venkatesan B M, Shah A B, Zuo J-M, . DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Advanced Functional Materials , 2010, 20(8): 1266–1275
[29] Kasianowicz J J, Brandin E, Branton D, . Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America , 1996, 93(24): 13770–13773
[30] Chen Z, Jiang Y, Dunphy D R, . DNA translocation through an array of kinked nanopores. Nature Materials , 2010, 9(8): 667–675
[31] Nam S-W, Rooks M J, Kim K-B, . Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Letters , 2009, 9(5): 2044–2048
[32] Nam S-W, Lee M-H, Lee S-H, . Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. Nano Letters , 2010, 10(9): 3324–3329
[33] Li F, Li L, Liao X, . Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. Journal of Membrane Science , 2011, 385–386: 1–9
[34] Elam J W, Xiong G, Han C Y, . Atomic layer deposition for the conformal coating of nanoporous materials. Journal of Nanomaterials , 2006, 64501 (5 pages)
[35] Grigoras K, Airaksinen V M, Franssila S. Coating of nanoporous membranes: atomic layer deposition versus sputtering. Journal of Nanoscience and Nanotechnology , 2009, 9(6): 3763–3770
[36] Pardon G, Gatty H K, Stemme G, . Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores. Nanotechnology , 2013, 24(1): 015602
[37] Knez M, Nielsch K, Niinist? L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials , 2007, 19(21): 3425–3438
[38] Sander M S, C?té M J, Gu W, . Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Advanced Materials , 2004, 16(22): 2052–2057
[39] Yang C J, Wang S M, Liang S W, . Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition. Applied Physics Letters , 2007, 90(3): 033104 (3 pages)
[40] Tan L K, Chong A S M, Tang X S E, . Combining atomic layer deposition with a template-assisted approach to fabricate size-reduced nanowire arrays on substrates and their electrochemical characterization. Journal of Physical Chemistry C , 2007, 111(13): 4964–4968
[41] Shin H, Jeong D K, Lee J, . Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Advanced Materials , 2004, 16(14): 1197–1200
[42] VanDersarl J J, Xu A M, Melosh N A. Nanostraws for direct fluidic intracellular access. Nano Letters , 2012, 12(8): 3881–3886
[43] Banerjee P, Perez I, Henn-Lecordier L, . Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nature Nanotechnology , 2009, 4(5): 292–296
AI Summary AI Mindmap
PDF(906 KB)

Accesses

Citations

Detail

Sections
Recommended

/